Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network

<jats:p>Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectronics process as the illumination source in a le...

Full description

Bibliographic Details
Main Authors: Kang, Iksung, de Cea, Marc, Xue, Jin, Li, Zheng, Barbastathis, George, Ram, Rajeev J
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Optica Publishing Group 2023
Online Access:https://hdl.handle.net/1721.1/150779
_version_ 1826202031671476224
author Kang, Iksung
de Cea, Marc
Xue, Jin
Li, Zheng
Barbastathis, George
Ram, Rajeev J
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Kang, Iksung
de Cea, Marc
Xue, Jin
Li, Zheng
Barbastathis, George
Ram, Rajeev J
author_sort Kang, Iksung
collection MIT
description <jats:p>Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectronics process as the illumination source in a lensless holographic microscope. Its small emission area (<jats:inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>&lt;<!-- < --></mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mtext>µ<!-- µ --></mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> </jats:inline-formula>) ensures high spatial coherence without the need for a pinhole and results in a large NA setup, circumventing the limits to the source-to-sample distance encountered by conventional lensless holography apparatus. The scene is reconstructed using an untrained deep neural network architecture that simultaneously performs spectral recovery by learning from the given single experimental diffraction intensity. We envision this synergetic combination of CMOS micro-LEDs and the machine learning framework can be used in other computational imaging applications, such as a compact microscope for live-cell tracking or spectroscopic imaging of biological materials.</jats:p>
first_indexed 2024-09-23T12:01:07Z
format Article
id mit-1721.1/150779
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:01:07Z
publishDate 2023
publisher Optica Publishing Group
record_format dspace
spelling mit-1721.1/1507792023-05-20T03:28:10Z Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network Kang, Iksung de Cea, Marc Xue, Jin Li, Zheng Barbastathis, George Ram, Rajeev J Massachusetts Institute of Technology. Department of Mechanical Engineering <jats:p>Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectronics process as the illumination source in a lensless holographic microscope. Its small emission area (<jats:inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>&lt;<!-- < --></mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mtext>µ<!-- µ --></mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> </jats:inline-formula>) ensures high spatial coherence without the need for a pinhole and results in a large NA setup, circumventing the limits to the source-to-sample distance encountered by conventional lensless holography apparatus. The scene is reconstructed using an untrained deep neural network architecture that simultaneously performs spectral recovery by learning from the given single experimental diffraction intensity. We envision this synergetic combination of CMOS micro-LEDs and the machine learning framework can be used in other computational imaging applications, such as a compact microscope for live-cell tracking or spectroscopic imaging of biological materials.</jats:p> 2023-05-19T13:48:24Z 2023-05-19T13:48:24Z 2022 2023-05-19T13:45:48Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/150779 Kang, Iksung, de Cea, Marc, Xue, Jin, Li, Zheng, Barbastathis, George et al. 2022. "Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network." Optica, 9 (10). en 10.1364/OPTICA.470712 Optica Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Optica Publishing Group Optica
spellingShingle Kang, Iksung
de Cea, Marc
Xue, Jin
Li, Zheng
Barbastathis, George
Ram, Rajeev J
Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title_full Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title_fullStr Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title_full_unstemmed Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title_short Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network
title_sort simultaneous spectral recovery and cmos micro led holography with an untrained deep neural network
url https://hdl.handle.net/1721.1/150779
work_keys_str_mv AT kangiksung simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork
AT deceamarc simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork
AT xuejin simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork
AT lizheng simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork
AT barbastathisgeorge simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork
AT ramrajeevj simultaneousspectralrecoveryandcmosmicroledholographywithanuntraineddeepneuralnetwork