The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government

Bibliographic Details
Main Authors: King, Jennifer, Ho, Daniel, Gupta, Arushi, Wu, Victor, Webley-Brown, Helen
Other Authors: Massachusetts Institute of Technology. Department of Political Science
Format: Article
Language:English
Published: ACM|2023 ACM Conference on Fairness, Accountability, and Transparency 2023
Online Access:https://hdl.handle.net/1721.1/151052
_version_ 1826203920529096704
author King, Jennifer
Ho, Daniel
Gupta, Arushi
Wu, Victor
Webley-Brown, Helen
author2 Massachusetts Institute of Technology. Department of Political Science
author_facet Massachusetts Institute of Technology. Department of Political Science
King, Jennifer
Ho, Daniel
Gupta, Arushi
Wu, Victor
Webley-Brown, Helen
author_sort King, Jennifer
collection MIT
first_indexed 2024-09-23T12:45:32Z
format Article
id mit-1721.1/151052
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:45:32Z
publishDate 2023
publisher ACM|2023 ACM Conference on Fairness, Accountability, and Transparency
record_format dspace
spelling mit-1721.1/1510522024-01-22T17:54:25Z The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government King, Jennifer Ho, Daniel Gupta, Arushi Wu, Victor Webley-Brown, Helen Massachusetts Institute of Technology. Department of Political Science 2023-07-10T15:47:38Z 2023-07-10T15:47:38Z 2023-06-12 2023-07-01T08:00:57Z Article http://purl.org/eprint/type/ConferencePaper 979-8-4007-0192-4 https://hdl.handle.net/1721.1/151052 King, Jennifer, Ho, Daniel, Gupta, Arushi, Wu, Victor and Webley-Brown, Helen. 2023. "The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government." PUBLISHER_CC en https://doi.org/10.1145/3593013.3594015 Creative Commons Attribution-Noncommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/ The author(s) application/pdf ACM|2023 ACM Conference on Fairness, Accountability, and Transparency Association for Computing Machinery
spellingShingle King, Jennifer
Ho, Daniel
Gupta, Arushi
Wu, Victor
Webley-Brown, Helen
The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title_full The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title_fullStr The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title_full_unstemmed The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title_short The Privacy-Bias Tradeoff: Data Minimization and Racial Disparity Assessments in U.S. Government
title_sort privacy bias tradeoff data minimization and racial disparity assessments in u s government
url https://hdl.handle.net/1721.1/151052
work_keys_str_mv AT kingjennifer theprivacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT hodaniel theprivacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT guptaarushi theprivacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT wuvictor theprivacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT webleybrownhelen theprivacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT kingjennifer privacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT hodaniel privacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT guptaarushi privacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT wuvictor privacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment
AT webleybrownhelen privacybiastradeoffdataminimizationandracialdisparityassessmentsinusgovernment