Measurement of the differential $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks

Abstract A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production ( $$\hbox...

Full description

Bibliographic Details
Main Authors: Tumasyan, A., Adam, W., Andrejkovic, J. W., Bergauer, T., Chatterjee, S., Damanakis, K., Dragicevic, M., Valle, A. E. D., Hussain, P. S., Jeitler, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck, J., Schöfbeck, R., Schwarz, D., Templ, S.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2023
Online Access:https://hdl.handle.net/1721.1/151068
Description
Summary:Abstract A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production ( $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ ) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ fb - 1 . The differential $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of $$173.06 \pm 0.84\,\text {Ge}\hspace{-.08em}\text {V} $$ 173.06 ± 0.84 Ge V .