Probabilistic Programming with Stochastic Probabilities
We present a new approach to the design and implementation of probabilistic programming languages (PPLs), based on the idea of stochastically estimating the probability density ratios necessary for probabilistic inference. By relaxing the usual PPL design constraint that these densities be compute...
Main Authors: | Lew, Alexander K., Ghavamizadeh, Matin, Rinard, Martin C., Mansinghka, Vikash K. |
---|---|
מחברים אחרים: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
פורמט: | Article |
שפה: | English |
יצא לאור: |
ACM
2023
|
גישה מקוונת: | https://hdl.handle.net/1721.1/151094 |
פריטים דומים
-
Probabilistic Programming with Programmable Variational Inference
מאת: Becker, McCoy R., et al.
יצא לאור: (2024) -
SPPL: probabilistic programming with fast exact symbolic inference
מאת: Saad, Feras A, et al.
יצא לאור: (2022) -
Probabilistic programming with programmable inference
מאת: Mansinghka, Vikash K., et al.
יצא לאור: (2021) -
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs
מאת: Lew, Alexander K., et al.
יצא לאור: (2023) -
GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables
מאת: Huot, Mathieu, et al.
יצא לאור: (2024)