Machine Learning Enabled Inorganic Synthesis Planning and Materials Design
The discovery and design of materials is essential for addressing important societal problems in areas such as energy, biomedicine, and computing technology. Data-driven synthesis planning with machine learning is a key step in the design of novel inorganic compounds with desirable properties. Inorg...
Autor principal: | Karpovich, Christopher |
---|---|
Outros Autores: | Olivetti, Elsa A. |
Formato: | Thesis |
Publicado em: |
Massachusetts Institute of Technology
2023
|
Acesso em linha: | https://hdl.handle.net/1721.1/151288 https://orcid.org/0000-0001-6691-5578 |
Registos relacionados
-
Machine learning-guided synthesis of advanced inorganic materials
Por: Tang, Bijun, et al.
Publicado em: (2021) -
Synthesis of inorganic materials /
Por: 411119 Schubert, U. (Ulrich), et al.
Publicado em: (2005) -
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
Por: Kim, Edward, et al.
Publicado em: (2022) -
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
Por: Kim, Edward, et al.
Publicado em: (2021) -
Inorganic materials synthesis and fabrication /
Por: Lalena, John N.
Publicado em: (2008)