Applications of AI on Resource-ConstrainedHardware with a focus on Anomaly Detection
This thesis addresses the challenges of improving the performance of AI models on resource-constrained microcontrollers (MCUs). As the complexity of modern models continues to grow and the demand for smaller mobile devices increases, optimizing model latency, memory usage, and accuracy on tiny devic...
Autor principal: | Ziegler, Travis |
---|---|
Outros Autores: | Oliva, Aude |
Formato: | Tese |
Publicado em: |
Massachusetts Institute of Technology
2023
|
Acesso em linha: | https://hdl.handle.net/1721.1/151408 |
Registros relacionados
-
Hardware-constrained edge deep learning
por: Ng, Jia Rui
Publicado em: (2024) -
Two-Stage Focused Inference for Resource-Constrained Collision-Free Navigation
por: Mu, Beipeng, et al.
Publicado em: (2015) -
A hardware implementation of Rivest-Shamir-Adleman co-processor for resource constrained embedded systems
por: Paniandi, Arul
Publicado em: (2006) -
A hardware implementation of Rivest-Shamir-Adleman co-processor for resource constrained embedded systems /
por: 408140 Arul Paniandi
Publicado em: (2006) -
AI hardware for neuromorphic computing applications – memory device fabrication and characteristics
por: Liu, Jixuan
Publicado em: (2023)