Applications of AI on Resource-ConstrainedHardware with a focus on Anomaly Detection
This thesis addresses the challenges of improving the performance of AI models on resource-constrained microcontrollers (MCUs). As the complexity of modern models continues to grow and the demand for smaller mobile devices increases, optimizing model latency, memory usage, and accuracy on tiny devic...
Prif Awdur: | Ziegler, Travis |
---|---|
Awduron Eraill: | Oliva, Aude |
Fformat: | Traethawd Ymchwil |
Cyhoeddwyd: |
Massachusetts Institute of Technology
2023
|
Mynediad Ar-lein: | https://hdl.handle.net/1721.1/151408 |
Eitemau Tebyg
-
Hardware-constrained edge deep learning
gan: Ng, Jia Rui
Cyhoeddwyd: (2024) -
Two-Stage Focused Inference for Resource-Constrained Collision-Free Navigation
gan: Mu, Beipeng, et al.
Cyhoeddwyd: (2015) -
A hardware implementation of Rivest-Shamir-Adleman co-processor for resource constrained embedded systems
gan: Paniandi, Arul
Cyhoeddwyd: (2006) -
A hardware implementation of Rivest-Shamir-Adleman co-processor for resource constrained embedded systems /
gan: 408140 Arul Paniandi
Cyhoeddwyd: (2006) -
AI hardware for neuromorphic computing applications – memory device fabrication and characteristics
gan: Liu, Jixuan
Cyhoeddwyd: (2023)