A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm

Abstract Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogeneti...

Full description

Bibliographic Details
Main Authors: Jun, Seong-Hwan, Nasif, Hassan, Jennings-Shaffer, Chris, Rich, David H., Kooperberg, Anna, Fourment, Mathieu, Zhang, Cheng, Suchard, Marc A., Matsen, Frederick A.
Other Authors: Center for Brains, Minds, and Machines
Format: Article
Language:English
Published: BioMed Central 2023
Online Access:https://hdl.handle.net/1721.1/151771
_version_ 1826192962099347456
author Jun, Seong-Hwan
Nasif, Hassan
Jennings-Shaffer, Chris
Rich, David H.
Kooperberg, Anna
Fourment, Mathieu
Zhang, Cheng
Suchard, Marc A.
Matsen, Frederick A.
author2 Center for Brains, Minds, and Machines
author_facet Center for Brains, Minds, and Machines
Jun, Seong-Hwan
Nasif, Hassan
Jennings-Shaffer, Chris
Rich, David H.
Kooperberg, Anna
Fourment, Mathieu
Zhang, Cheng
Suchard, Marc A.
Matsen, Frederick A.
author_sort Jun, Seong-Hwan
collection MIT
description Abstract Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approximation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum-product algorithm) to compute a composite-like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show the utility of this algorithm by rapidly making point estimates for branch lengths of a multi-tree phylogenetic model. These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it will form a useful starting point for variational inference.
first_indexed 2024-09-23T09:31:30Z
format Article
id mit-1721.1/151771
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T09:31:30Z
publishDate 2023
publisher BioMed Central
record_format dspace
spelling mit-1721.1/1517712024-01-22T18:33:26Z A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm Jun, Seong-Hwan Nasif, Hassan Jennings-Shaffer, Chris Rich, David H. Kooperberg, Anna Fourment, Mathieu Zhang, Cheng Suchard, Marc A. Matsen, Frederick A. Center for Brains, Minds, and Machines Abstract Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approximation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum-product algorithm) to compute a composite-like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show the utility of this algorithm by rapidly making point estimates for branch lengths of a multi-tree phylogenetic model. These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it will form a useful starting point for variational inference. 2023-08-16T20:50:11Z 2023-08-16T20:50:11Z 2023-07-31 2023-08-06T03:12:31Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/151771 Algorithms for Molecular Biology. 2023 Jul 31;18(1):10 PUBLISHER_CC en https://doi.org/10.1186/s13015-023-00235-1 Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf BioMed Central BioMed Central
spellingShingle Jun, Seong-Hwan
Nasif, Hassan
Jennings-Shaffer, Chris
Rich, David H.
Kooperberg, Anna
Fourment, Mathieu
Zhang, Cheng
Suchard, Marc A.
Matsen, Frederick A.
A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title_full A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title_fullStr A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title_full_unstemmed A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title_short A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
title_sort topology marginal composite likelihood via a generalized phylogenetic pruning algorithm
url https://hdl.handle.net/1721.1/151771
work_keys_str_mv AT junseonghwan atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT nasifhassan atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT jenningsshafferchris atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT richdavidh atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT kooperberganna atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT fourmentmathieu atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT zhangcheng atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT suchardmarca atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT matsenfredericka atopologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT junseonghwan topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT nasifhassan topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT jenningsshafferchris topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT richdavidh topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT kooperberganna topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT fourmentmathieu topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT zhangcheng topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT suchardmarca topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm
AT matsenfredericka topologymarginalcompositelikelihoodviaageneralizedphylogeneticpruningalgorithm