A conformable ultrasound patch for cavitation enhanced transdermal cosmeceutical delivery

Increased consumer interest in healthy-looking skin demands a safe and effective method to increase transdermal absorption of innovative therapeutic cosmeceuticals. However, permeation of small-molecule drugs is limited by the innate barrier function of the stratum corneum. Here, we report a conform...

Full description

Bibliographic Details
Main Author: Shah, Aastha
Other Authors: Dagdeviren, Canan
Format: Thesis
Published: Massachusetts Institute of Technology 2023
Online Access:https://hdl.handle.net/1721.1/151988
Description
Summary:Increased consumer interest in healthy-looking skin demands a safe and effective method to increase transdermal absorption of innovative therapeutic cosmeceuticals. However, permeation of small-molecule drugs is limited by the innate barrier function of the stratum corneum. Here, we report a conformable ultrasound patch (cUSP) that enhances transdermal transport of niacinamide by inducing intermediate-frequency sonophoresis in the fluid coupling medium between the patch and the skin. The cUSP consists of piezoelectric transducers embedded in a soft elastomer to create localized cavitation pockets (0.8 cm², 1 mm deep) over larger areas of conformal contact (20 cm²). Multiphysics simulation models, acoustic spectrum analysis and high-speed videography are used to characterize transducer deflection, acoustic pressure fields and resulting cavitation bubble dynamics in the coupling medium. The final system demonstrates a 26.2-fold enhancement in niacinamide transport in a porcine model in vitro with a 10-minute ultrasound application, demonstrating suitability of the device for short-exposure, large-area application of sonophoresis for patients and consumers suffering from skin conditions and premature skin aging.