Characterizing and Improving Resilience of Accelerators to Memory Errors in Autonomous Robots
Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application of traditional mitigation techniques is ill-suited d...
Hlavní autoři: | Shah, Deval, Xue, Zi Yu, Pattabiraman, Karthik, Aamodt, Tor |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
ACM
2023
|
On-line přístup: | https://hdl.handle.net/1721.1/152618 |
Podobné jednotky
-
Investigation on the dead reckoning of autonomous robotic vehicle
Autor: Tan, Tor Hee.
Vydáno: (2008) -
Energy efficient accelerators for autonomous navigation in miniaturized robots
Autor: Suleiman, Amr S. (Amr AbdulZahir)
Vydáno: (2018) -
A forward error compensation approach for fault resilient deep neural network accelerator design
Autor: Liu, Wenye, a další
Vydáno: (2022) -
Improving Robot Controller Transparency Through Autonomous Policy Explanation
Autor: Hayes, Bradley H, a další
Vydáno: (2018) -
Robust semantic SLAM for autonomous robot
Autor: Goh, Xue Zhe
Vydáno: (2024)