Evidence for the decays B0 → 𝐷(*)0 ϕ and updated measurements of the branching fractions of the 𝐵0𝑠 → 𝐷(*)0 ϕ decays
Abstract Evidence for the decays B0 → D ¯ $$ \overline{D} $$...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2023
|
Online Access: | https://hdl.handle.net/1721.1/152934 |
Summary: | Abstract
Evidence for the decays B0 →
D
¯
$$ \overline{D} $$
0ϕ and B0 →
D
¯
$$ \overline{D} $$
*0ϕ is reported with a significance of 3.6 σ and 4.3 σ, respectively. The analysis employs pp collision data at centre-of-mass energies
s
$$ \sqrt{s} $$
= 7, 8 and 13 TeV collected by the LHCb detector and corresponding to an integrated luminosity of 9 fb−1. The branching fractions are measured to be
B
B
0
→
D
¯
0
ϕ
=
7.7
±
2.1
±
0.7
±
0.7
×
10
−
7
,
B
B
0
→
D
¯
∗
0
ϕ
=
2.2
±
0.5
±
0.2
±
0.2
×
10
−
6
.
$$ {\displaystyle \begin{array}{l}\mathcal{B}\left({B}^0\to {\overline{D}}^0\phi \right)=\left(7.7\pm 2.1\pm 0.7\pm 0.7\right)\times {10}^{-7},\\ {}\mathcal{B}\left({B}^0\to {\overline{D}}^{\ast 0}\phi \right)=\left(2.2\pm 0.5\pm 0.2\pm 0.2\right)\times {10}^{-6}.\end{array}} $$
In these results, the first uncertainty is statistical, the second systematic, and the third is related to the branching fraction of the B0 →
D
¯
$$ \overline{D} $$
0K+K− decay, used for normalisation. By combining the branching fractions of the decays B0 →
D
¯
∗
0
ϕ
$$ {\overline{D}}^{\left(\ast \right)0}\phi $$
and B0 →
D
¯
∗
0
ω
$$ {\overline{D}}^{\left(\ast \right)0}\omega $$
, the ω-ϕ mixing angle δ is constrained to be tan2 δ = (3.6 ± 0.7 ± 0.4) × 10−3, where the first uncertainty is statistical and the second systematic. An updated measurement of the branching fractions of the
B
s
0
$$ {B}_s^0 $$
→
D
¯
∗
0
ϕ
$$ {\overline{D}}^{\left(\ast \right)0}\phi $$
decays, which can be used to determine the CKM angle γ, leads to
B
B
s
0
→
D
¯
0
ϕ
=
2.30
±
0.10
±
0.11
±
0.20
×
10
−
5
,
B
B
s
0
→
D
¯
∗
0
ϕ
=
3.17
±
0.16
±
0.17
±
0.27
×
10
−
5
.
$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}_s^0\to {\overline{D}}^0\phi \right)=\left(2.30\pm 0.10\pm 0.11\pm 0.20\right)\times {10}^{-5},\\ {}\mathcal{B}\left({B}_s^0\to {\overline{D}}^{\ast 0}\phi \right)=\left(3.17\pm 0.16\pm 0.17\pm 0.27\right)\times {10}^{-5}.\end{array}} $$ |
---|