Decision-Aware Conditional GANs for Time Series Data

We introduce the decision-aware time-series conditional generative adversarial network (DAT-CGAN), a method for the generation of time-series data that is designed to support decision-making. The framework adopts a multi-Wasserstein loss on decision-related quantities and an overlapped block-samplin...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Sun, He, Deng, Zhun, Chen, Hui, Parkes, David
Muut tekijät: Sloan School of Management
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: ACM|4th ACM International Conference on AI in Finance 2023
Linkit:https://hdl.handle.net/1721.1/153133