Geometry of Sensitivity: Twice Sampling and Hybrid Clipping in Differential Privacy with Optimal Gaussian Noise and Application to Deep Learning

We study the fundamental problem of the construction of optimal randomization in Differential Privacy (DP). Depending on the clipping strategy or additional properties of the processing function, the corresponding sensitivity set theoretically determines the necessary randomization to produce the re...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Xiao, Hanshen, Wan, Jun, Devadas, Srinivas
Muut tekijät: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: ACM|Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security 2023
Linkit:https://hdl.handle.net/1721.1/153139

Samankaltaisia teoksia