Clover: Toward Sustainable AI with Carbon-Aware Machine Learning Inference Service

This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce, Clover, a carbon-frien...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Li, Baolin, Samsi, Siddharth, Gadepally, Vijay, Tiwari, Devesh
অন্যান্য লেখক: Lincoln Laboratory
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: ACM|The International Conference for High Performance Computing, Networking, Storage and Analysis 2023
অনলাইন ব্যবহার করুন:https://hdl.handle.net/1721.1/153142
বিবরন
সংক্ষিপ্ত:This paper presents a solution to the challenge of mitigating carbon emissions from hosting large-scale machine learning (ML) inference services. ML inference is critical to modern technology products, but it is also a significant contributor to carbon footprint. We introduce, Clover, a carbon-friendly ML inference service runtime system that balances performance, accuracy, and carbon emissions through mixed-quality models and GPU resource partitioning. Our experimental results demonstrate that Clover is effective in substantially reducing carbon emissions while maintaining high accuracy and meeting service level agreement (SLA) targets.