The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium

This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</m...

Full description

Bibliographic Details
Main Authors: Ponciano-Ojeda, Francisco, Mojica-Casique, Cristian, Hernández-Gómez, Santiago, Del Angel, Alberto, Hoyos-Campo, Lina M., Flores-Mijangos, Jesús, Ramírez-Martínez, Fernando, Sahagún Sánchez, Daniel, Jáuregui, Rocío, Jiménez-Mier, José
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics
Format: Article
Published: Multidisciplinary Digital Publishing Institute 2023
Online Access:https://hdl.handle.net/1721.1/153247
_version_ 1826201338422231040
author Ponciano-Ojeda, Francisco
Mojica-Casique, Cristian
Hernández-Gómez, Santiago
Del Angel, Alberto
Hoyos-Campo, Lina M.
Flores-Mijangos, Jesús
Ramírez-Martínez, Fernando
Sahagún Sánchez, Daniel
Jáuregui, Rocío
Jiménez-Mier, José
author2 Massachusetts Institute of Technology. Research Laboratory of Electronics
author_facet Massachusetts Institute of Technology. Research Laboratory of Electronics
Ponciano-Ojeda, Francisco
Mojica-Casique, Cristian
Hernández-Gómez, Santiago
Del Angel, Alberto
Hoyos-Campo, Lina M.
Flores-Mijangos, Jesús
Ramírez-Martínez, Fernando
Sahagún Sánchez, Daniel
Jáuregui, Rocío
Jiménez-Mier, José
author_sort Ponciano-Ojeda, Francisco
collection MIT
description This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo stretchy="false">&rarr;</mo><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> state decay directly into the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mi>S</mi></mrow></semantics></math></inline-formula> ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler&ndash;Townes splitting generated in the preparation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler&ndash;Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT.
first_indexed 2024-09-23T11:50:03Z
format Article
id mit-1721.1/153247
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:50:03Z
publishDate 2023
publisher Multidisciplinary Digital Publishing Institute
record_format dspace
spelling mit-1721.1/1532472024-01-24T22:01:46Z The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium Ponciano-Ojeda, Francisco Mojica-Casique, Cristian Hernández-Gómez, Santiago Del Angel, Alberto Hoyos-Campo, Lina M. Flores-Mijangos, Jesús Ramírez-Martínez, Fernando Sahagún Sánchez, Daniel Jáuregui, Rocío Jiménez-Mier, José Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo stretchy="false">&rarr;</mo><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> state decay directly into the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mi>S</mi></mrow></semantics></math></inline-formula> ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler&ndash;Townes splitting generated in the preparation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler&ndash;Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT. 2023-12-22T16:51:17Z 2023-12-22T16:51:17Z 2023-12-01 2023-12-22T13:45:17Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/153247 Photonics 10 (12): 1335 (2023) PUBLISHER_CC http://dx.doi.org/10.3390/photonics10121335 Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ application/pdf Multidisciplinary Digital Publishing Institute Multidisciplinary Digital Publishing Institute
spellingShingle Ponciano-Ojeda, Francisco
Mojica-Casique, Cristian
Hernández-Gómez, Santiago
Del Angel, Alberto
Hoyos-Campo, Lina M.
Flores-Mijangos, Jesús
Ramírez-Martínez, Fernando
Sahagún Sánchez, Daniel
Jáuregui, Rocío
Jiménez-Mier, José
The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title_full The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title_fullStr The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title_full_unstemmed The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title_short The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
title_sort 5p3 2 6pj j 1 2 3 2 electric dipole forbidden transitions in rubidium
url https://hdl.handle.net/1721.1/153247
work_keys_str_mv AT poncianoojedafrancisco the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT mojicacasiquecristian the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT hernandezgomezsantiago the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT delangelalberto the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT hoyoscampolinam the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT floresmijangosjesus the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT ramirezmartinezfernando the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT sahagunsanchezdaniel the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT jaureguirocio the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT jimenezmierjose the5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT poncianoojedafrancisco 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT mojicacasiquecristian 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT hernandezgomezsantiago 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT delangelalberto 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT hoyoscampolinam 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT floresmijangosjesus 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT ramirezmartinezfernando 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT sahagunsanchezdaniel 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT jaureguirocio 5p326pjj1232electricdipoleforbiddentransitionsinrubidium
AT jimenezmierjose 5p326pjj1232electricdipoleforbiddentransitionsinrubidium