The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium
This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</m...
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Multidisciplinary Digital Publishing Institute
2023
|
Online Access: | https://hdl.handle.net/1721.1/153247 |
_version_ | 1826201338422231040 |
---|---|
author | Ponciano-Ojeda, Francisco Mojica-Casique, Cristian Hernández-Gómez, Santiago Del Angel, Alberto Hoyos-Campo, Lina M. Flores-Mijangos, Jesús Ramírez-Martínez, Fernando Sahagún Sánchez, Daniel Jáuregui, Rocío Jiménez-Mier, José |
author2 | Massachusetts Institute of Technology. Research Laboratory of Electronics |
author_facet | Massachusetts Institute of Technology. Research Laboratory of Electronics Ponciano-Ojeda, Francisco Mojica-Casique, Cristian Hernández-Gómez, Santiago Del Angel, Alberto Hoyos-Campo, Lina M. Flores-Mijangos, Jesús Ramírez-Martínez, Fernando Sahagún Sánchez, Daniel Jáuregui, Rocío Jiménez-Mier, José |
author_sort | Ponciano-Ojeda, Francisco |
collection | MIT |
description | This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo stretchy="false">→</mo><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> state decay directly into the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mi>S</mi></mrow></semantics></math></inline-formula> ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler–Townes splitting generated in the preparation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler–Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT. |
first_indexed | 2024-09-23T11:50:03Z |
format | Article |
id | mit-1721.1/153247 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T11:50:03Z |
publishDate | 2023 |
publisher | Multidisciplinary Digital Publishing Institute |
record_format | dspace |
spelling | mit-1721.1/1532472024-01-24T22:01:46Z The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium Ponciano-Ojeda, Francisco Mojica-Casique, Cristian Hernández-Gómez, Santiago Del Angel, Alberto Hoyos-Campo, Lina M. Flores-Mijangos, Jesús Ramírez-Martínez, Fernando Sahagún Sánchez, Daniel Jáuregui, Rocío Jiménez-Mier, José Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science This paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo stretchy="false">→</mo><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> state decay directly into the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mi>S</mi></mrow></semantics></math></inline-formula> ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler–Townes splitting generated in the preparation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler–Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT. 2023-12-22T16:51:17Z 2023-12-22T16:51:17Z 2023-12-01 2023-12-22T13:45:17Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/153247 Photonics 10 (12): 1335 (2023) PUBLISHER_CC http://dx.doi.org/10.3390/photonics10121335 Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ application/pdf Multidisciplinary Digital Publishing Institute Multidisciplinary Digital Publishing Institute |
spellingShingle | Ponciano-Ojeda, Francisco Mojica-Casique, Cristian Hernández-Gómez, Santiago Del Angel, Alberto Hoyos-Campo, Lina M. Flores-Mijangos, Jesús Ramírez-Martínez, Fernando Sahagún Sánchez, Daniel Jáuregui, Rocío Jiménez-Mier, José The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title | The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title_full | The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title_fullStr | The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title_full_unstemmed | The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title_short | The 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidium |
title_sort | 5p3 2 6pj j 1 2 3 2 electric dipole forbidden transitions in rubidium |
url | https://hdl.handle.net/1721.1/153247 |
work_keys_str_mv | AT poncianoojedafrancisco the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT mojicacasiquecristian the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT hernandezgomezsantiago the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT delangelalberto the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT hoyoscampolinam the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT floresmijangosjesus the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT ramirezmartinezfernando the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT sahagunsanchezdaniel the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT jaureguirocio the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT jimenezmierjose the5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT poncianoojedafrancisco 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT mojicacasiquecristian 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT hernandezgomezsantiago 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT delangelalberto 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT hoyoscampolinam 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT floresmijangosjesus 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT ramirezmartinezfernando 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT sahagunsanchezdaniel 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT jaureguirocio 5p326pjj1232electricdipoleforbiddentransitionsinrubidium AT jimenezmierjose 5p326pjj1232electricdipoleforbiddentransitionsinrubidium |