Linear-size formulations for connected planar graph partitioning and political districting

Motivated by applications in political districting, we consider the task of partitioning the n vertices of a planar graph into k connected components. We propose an extended formulation for this task that has two desirable properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (...

Full description

Bibliographic Details
Main Authors: Zhang, Jack, Validi, Hamidreza, Buchanan, Austin, Hicks, Illya V.
Other Authors: Massachusetts Institute of Technology. Operations Research Center
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2024
Online Access:https://hdl.handle.net/1721.1/153305
Description
Summary:Motivated by applications in political districting, we consider the task of partitioning the n vertices of a planar graph into k connected components. We propose an extended formulation for this task that has two desirable properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (ii) it is perfect. To explore its ability to solve real-world problems, we apply it to a political districting problem in which contiguity and population balance are imposed as hard constraints and compactness is optimized. Computational experiments show that, despite the model’s small size and integrality for connected partitioning, the population balance constraints are more troublesome to effectively impose. Nevertheless, we share our findings in hopes that others may find better ways to impose them.