In situ architecture of Opa1-dependent mitochondrial cristae remodeling

Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The...

Full description

Bibliographic Details
Main Authors: Fry, Michelle Y., Navarro, Paula P., Hakim, Pusparanee, Ananda, Virly Y., Qin, Xingping, Landoni, Juan C., Rath, Sneha, Inde, Zintis, Lugo, Camila M., Luce, Bridget E., Ge, Yifan, McDonald, Julie L., Ali, Ilzat, Ha, Leillani L.
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:English
Published: Nature Publishing Group UK 2024
Online Access:https://hdl.handle.net/1721.1/153403
_version_ 1826217511631192064
author Fry, Michelle Y.
Navarro, Paula P.
Hakim, Pusparanee
Ananda, Virly Y.
Qin, Xingping
Landoni, Juan C.
Rath, Sneha
Inde, Zintis
Lugo, Camila M.
Luce, Bridget E.
Ge, Yifan
McDonald, Julie L.
Ali, Ilzat
Ha, Leillani L.
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Fry, Michelle Y.
Navarro, Paula P.
Hakim, Pusparanee
Ananda, Virly Y.
Qin, Xingping
Landoni, Juan C.
Rath, Sneha
Inde, Zintis
Lugo, Camila M.
Luce, Bridget E.
Ge, Yifan
McDonald, Julie L.
Ali, Ilzat
Ha, Leillani L.
author_sort Fry, Michelle Y.
collection MIT
description Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
first_indexed 2024-09-23T17:04:47Z
format Article
id mit-1721.1/153403
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T17:04:47Z
publishDate 2024
publisher Nature Publishing Group UK
record_format dspace
spelling mit-1721.1/1534032024-07-11T19:58:00Z In situ architecture of Opa1-dependent mitochondrial cristae remodeling Fry, Michelle Y. Navarro, Paula P. Hakim, Pusparanee Ananda, Virly Y. Qin, Xingping Landoni, Juan C. Rath, Sneha Inde, Zintis Lugo, Camila M. Luce, Bridget E. Ge, Yifan McDonald, Julie L. Ali, Ilzat Ha, Leillani L. Massachusetts Institute of Technology. Department of Biology Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling. 2024-01-23T20:51:50Z 2024-01-23T20:51:50Z 2024-01-15 2024-01-21T04:22:22Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/153403 Fry, Michelle Y., Navarro, Paula P., Hakim, Pusparanee, Ananda, Virly Y., Qin, Xingping et al. 2024. "In situ architecture of Opa1-dependent mitochondrial cristae remodeling." The Embo Journal, 2024. en https://doi.org/10.1038/s44318-024-00027-2 The Embo Journal Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Nature Publishing Group UK
spellingShingle Fry, Michelle Y.
Navarro, Paula P.
Hakim, Pusparanee
Ananda, Virly Y.
Qin, Xingping
Landoni, Juan C.
Rath, Sneha
Inde, Zintis
Lugo, Camila M.
Luce, Bridget E.
Ge, Yifan
McDonald, Julie L.
Ali, Ilzat
Ha, Leillani L.
In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title_full In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title_fullStr In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title_full_unstemmed In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title_short In situ architecture of Opa1-dependent mitochondrial cristae remodeling
title_sort in situ architecture of opa1 dependent mitochondrial cristae remodeling
url https://hdl.handle.net/1721.1/153403
work_keys_str_mv AT frymichelley insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT navarropaulap insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT hakimpusparanee insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT anandavirlyy insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT qinxingping insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT landonijuanc insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT rathsneha insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT indezintis insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT lugocamilam insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT lucebridgete insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT geyifan insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT mcdonaldjuliel insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT aliilzat insituarchitectureofopa1dependentmitochondrialcristaeremodeling
AT haleillanil insituarchitectureofopa1dependentmitochondrialcristaeremodeling