Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions
2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) November 28-30, 2022. Ginowan, Japan.
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers
2024
|
Online Access: | https://hdl.handle.net/1721.1/153605 |
_version_ | 1826190120778203136 |
---|---|
author | Khazoom, Charles Gonzalez-Diaz, Daniel Ding, Yanran Kim, Sangbae |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Khazoom, Charles Gonzalez-Diaz, Daniel Ding, Yanran Kim, Sangbae |
author_sort | Khazoom, Charles |
collection | MIT |
description | 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) November 28-30, 2022. Ginowan, Japan. |
first_indexed | 2024-09-23T08:35:21Z |
format | Article |
id | mit-1721.1/153605 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T08:35:21Z |
publishDate | 2024 |
publisher | Institute of Electrical and Electronics Engineers |
record_format | dspace |
spelling | mit-1721.1/1536052024-09-20T18:48:11Z Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions Khazoom, Charles Gonzalez-Diaz, Daniel Ding, Yanran Kim, Sangbae Massachusetts Institute of Technology. Department of Mechanical Engineering 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) November 28-30, 2022. Ginowan, Japan. This work combines control barrier functions (CBFs) with a whole-body controller to enable self-collision avoidance for the MIT Humanoid. Existing reactive controllers for self-collision avoidance cannot guarantee collision-free trajectories as they do not leverage the robot’s full dynamics, thus compromising kinematic feasibility. In comparison, the proposed CBF-WBC controller can reason about the robot’s underactuated dynamics in real-time to guarantee collision-free motions. The effectiveness of this approach is validated in simulation. First, a simple hand-reaching experiment shows that the CBF-WBC enables the robot’s hand to deviate from an infeasible reference trajectory to avoid self-collisions. Second, the CBF-WBC is combined with a linear model predictive controller (LMPC) designed for dynamic locomotion, and the CBF-WBC is used to track the LMPC predictions. A centroidal angular momentum task is also used to generate arm motions that assist humanoid locomotion and disturbance recovery. Walking experiments show that CBFs allow the centroidal angular momentum task to generate feasible arm motions and avoid leg self-collisions when the footstep location or swing trajectory provided by the high-level planner are infeasible for the real robot. 2024-02-28T21:56:48Z 2024-02-28T21:56:48Z 2022-11-28 2024-02-28T21:49:11Z Article http://purl.org/eprint/type/ConferencePaper https://hdl.handle.net/1721.1/153605 C. Khazoom, D. Gonzalez-Diaz, Y. Ding and S. Kim, "Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions," 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), Ginowan, Japan, 2022, pp. 558-565. en 10.1109/humanoids53995.2022.10000235 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Institute of Electrical and Electronics Engineers Institute of Electrical and Electronics Engineers |
spellingShingle | Khazoom, Charles Gonzalez-Diaz, Daniel Ding, Yanran Kim, Sangbae Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title | Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title_full | Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title_fullStr | Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title_full_unstemmed | Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title_short | Humanoid Self-Collision Avoidance Using Whole-Body Control with Control Barrier Functions |
title_sort | humanoid self collision avoidance using whole body control with control barrier functions |
url | https://hdl.handle.net/1721.1/153605 |
work_keys_str_mv | AT khazoomcharles humanoidselfcollisionavoidanceusingwholebodycontrolwithcontrolbarrierfunctions AT gonzalezdiazdaniel humanoidselfcollisionavoidanceusingwholebodycontrolwithcontrolbarrierfunctions AT dingyanran humanoidselfcollisionavoidanceusingwholebodycontrolwithcontrolbarrierfunctions AT kimsangbae humanoidselfcollisionavoidanceusingwholebodycontrolwithcontrolbarrierfunctions |