Summary: | Gallium nitride (GaN) integrated circuits (ICs) are receiving increasing attention because they offer compactness, reduced parasitics, and higher performance compared to discrete transistors or printed circuit board (PCB) integration. The p-GaN platform exhibits tremendous potential in power ICs and recently, in high temperature (500 °C) digital circuits. While the initial demonstrations offer promising results, several challenges remain. Notably, the lack of a monolithically integrated GaN complementary technology impedes the advancement of GaN power ICs.
This thesis aims to enhance the p-GaN platform (GaN-CMOS platform) (CMOS: complementary metal-oxide-semiconductor) through developing the next generation of GaN complementary technology (p-channel and n-channel field-effect transistors (FETs)). Based on the GaN-CMOS platform, the aggressive scaling of novel complementary transistors (self-aligned-gate p-FET and self-aligned metal/p-GaN-gate HEMT) is pursued. Alternative metallization schemes and a new technology for gate recess in GaN p-FETs are demonstrated. The unique characteristics of the p-FET are revealed through a combination of experimental measurements and TCAD simulations. The p-FET (based on GaN-CMOS platform) and p-GaN-gate n-FETs are analyzed for high temperature operation. Lastly, in order to aid the future design of more complex circuits based on the p-GaN platform, a device-to-circuit CAD framework was developed for GaN n-FET circuits and validated at high temperature up to 500 °C.
To the best of the author’s knowledge, the above results represent the state-of-the-art in GaN complementary technology and GaN electronics based on the p-GaN platform. These findings are expected to deliver wider impact in the areas of power, RF/mixed-signal, and high temperature electronics.
|