Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra

Many quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function <mml:math xmlns:mml="http://www.w3.org/1998...

Full description

Bibliographic Details
Main Authors: Nguyen, Quynh T., Kiani, Bobak T., Lloyd, Seth
Format: Article
Language:English
Published: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften 2024
Subjects:
Online Access:https://hdl.handle.net/1721.1/153945
Description
Summary:Many quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>&amp;#x2032;</mml:mo></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>, have a variety of applications in mathematics and engineering. They are generally dense and full-rank. Classically, the celebrated fast multipole method performs matrix multiplication on kernel matrices of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> in time almost linear in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> by using the linear algebraic framework of hierarchical matrices. In light of this success, we propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer. When applied to many physical kernel matrices, our method can improve the runtime of solving quantum linear systems of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>&amp;#x03BA;</mml:mi><mml:mi>polylog</mml:mi><mml:mo>&amp;#x2061;</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mi>N</mml:mi><mml:mi>&amp;#x03B5;</mml:mi></mml:mfrac><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&amp;#x03BA;</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&amp;#x03B5;</mml:mi></mml:math> are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math>, exponentially improves over prior quantum linear systems algorithms in the case of dense and full-rank kernel matrices. We discuss possible applications of our methodology in solving integral equations and accelerating computations in N-body problems.