Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water

A special membrane electrode assembly to measure <jats:italic>operando</jats:italic> X‐ray absorption spectra and resonant photoemission spectra of mesoporous templated iridium oxide films is used. These films are calcined to different temperatures to mediate the catalyst activity. By co...

Full description

Bibliographic Details
Main Authors: Velasco Vélez, Juan Jesús, Bernsmeier, Denis, Mom, Rik V., Zeller, Patrick, Shao‐Horn, Yang, Roldan Cuenya, Beatriz, Knop‐Gericke, Axel, Schlögl, Robert, Jones, Travis E.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Wiley 2024
Online Access:https://hdl.handle.net/1721.1/154278
_version_ 1824458381901955072
author Velasco Vélez, Juan Jesús
Bernsmeier, Denis
Mom, Rik V.
Zeller, Patrick
Shao‐Horn, Yang
Roldan Cuenya, Beatriz
Knop‐Gericke, Axel
Schlögl, Robert
Jones, Travis E.
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Velasco Vélez, Juan Jesús
Bernsmeier, Denis
Mom, Rik V.
Zeller, Patrick
Shao‐Horn, Yang
Roldan Cuenya, Beatriz
Knop‐Gericke, Axel
Schlögl, Robert
Jones, Travis E.
author_sort Velasco Vélez, Juan Jesús
collection MIT
description A special membrane electrode assembly to measure <jats:italic>operando</jats:italic> X‐ray absorption spectra and resonant photoemission spectra of mesoporous templated iridium oxide films is used. These films are calcined to different temperatures to mediate the catalyst activity. By combining <jats:italic>operando</jats:italic> resonant photoemission measurements of different films with ab initio simulations these are able to unambiguously distinguish µ<jats:sub>2</jats:sub>‐O (bridging oxygen) and µ<jats:sub>1</jats:sub>‐O (terminal oxygen) in the near‐surface regions of the catalysts. The intrinsic activity of iridium oxide scales with the formation of µ<jats:sub>1</jats:sub>‐O (terminal oxygen) is found. Importantly, it is shown that the peroxo species do not accumulate under reaction conditions. Rather, the formation of µ<jats:sub>1</jats:sub>‐O species, which are active in O−O bond formation during the OER, is the most oxidized oxygen species observed, which is consistent with an O−O rate‐limiting step. Thus, the oxygen species taking part in the electrochemical oxidation of water on iridium electrodes are more involved and complex than previously stated. This result highlights the importance of employing theory together with true and complementary <jats:italic>operando</jats:italic> measurements capable of probing different aspects of catalysts surfaces during operation.
first_indexed 2024-09-23T15:47:03Z
format Article
id mit-1721.1/154278
institution Massachusetts Institute of Technology
language English
last_indexed 2025-02-19T04:25:00Z
publishDate 2024
publisher Wiley
record_format dspace
spelling mit-1721.1/1542782025-01-06T04:17:03Z Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water Velasco Vélez, Juan Jesús Bernsmeier, Denis Mom, Rik V. Zeller, Patrick Shao‐Horn, Yang Roldan Cuenya, Beatriz Knop‐Gericke, Axel Schlögl, Robert Jones, Travis E. Massachusetts Institute of Technology. Department of Mechanical Engineering A special membrane electrode assembly to measure <jats:italic>operando</jats:italic> X‐ray absorption spectra and resonant photoemission spectra of mesoporous templated iridium oxide films is used. These films are calcined to different temperatures to mediate the catalyst activity. By combining <jats:italic>operando</jats:italic> resonant photoemission measurements of different films with ab initio simulations these are able to unambiguously distinguish µ<jats:sub>2</jats:sub>‐O (bridging oxygen) and µ<jats:sub>1</jats:sub>‐O (terminal oxygen) in the near‐surface regions of the catalysts. The intrinsic activity of iridium oxide scales with the formation of µ<jats:sub>1</jats:sub>‐O (terminal oxygen) is found. Importantly, it is shown that the peroxo species do not accumulate under reaction conditions. Rather, the formation of µ<jats:sub>1</jats:sub>‐O species, which are active in O−O bond formation during the OER, is the most oxidized oxygen species observed, which is consistent with an O−O rate‐limiting step. Thus, the oxygen species taking part in the electrochemical oxidation of water on iridium electrodes are more involved and complex than previously stated. This result highlights the importance of employing theory together with true and complementary <jats:italic>operando</jats:italic> measurements capable of probing different aspects of catalysts surfaces during operation. 2024-04-25T12:35:37Z 2024-04-25T12:35:37Z 2024-03-11 2024-04-24T21:21:16Z Article http://purl.org/eprint/type/JournalArticle 1614-6832 1614-6840 https://hdl.handle.net/1721.1/154278 J. J. Velasco Vélez, D. Bernsmeier, R. V. Mom, P. Zeller, Y. Shao-Horn, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, T. E. Jones, Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water. Adv. Energy Mater. 2024, 2303407. en 10.1002/aenm.202303407 Advanced Energy Materials Creative Commons Attribution-NonCommercial-NoDerivs License https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Wiley Wiley
spellingShingle Velasco Vélez, Juan Jesús
Bernsmeier, Denis
Mom, Rik V.
Zeller, Patrick
Shao‐Horn, Yang
Roldan Cuenya, Beatriz
Knop‐Gericke, Axel
Schlögl, Robert
Jones, Travis E.
Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title_full Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title_fullStr Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title_full_unstemmed Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title_short Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water
title_sort iridium oxide coordinatively unsaturated active sites govern the electrocatalytic oxidation of water
url https://hdl.handle.net/1721.1/154278
work_keys_str_mv AT velascovelezjuanjesus iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT bernsmeierdenis iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT momrikv iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT zellerpatrick iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT shaohornyang iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT roldancuenyabeatriz iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT knopgerickeaxel iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT schloglrobert iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater
AT jonestravise iridiumoxidecoordinativelyunsaturatedactivesitesgoverntheelectrocatalyticoxidationofwater