Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms

Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a...

Full description

Bibliographic Details
Main Authors: Du, Li, Barral, Pierre, Cantara, Michael, de Hond, Julius, Lu, Yu-Kun, Ketterle, Wolfgang
Other Authors: MIT-Harvard Center for Ultracold Atoms
Format: Article
Language:en_US
Published: American Association for the Advancement of Science 2024
Online Access:https://hdl.handle.net/1721.1/154380
_version_ 1826217043146309632
author Du, Li
Barral, Pierre
Cantara, Michael
de Hond, Julius
Lu, Yu-Kun
Ketterle, Wolfgang
author2 MIT-Harvard Center for Ultracold Atoms
author_facet MIT-Harvard Center for Ultracold Atoms
Du, Li
Barral, Pierre
Cantara, Michael
de Hond, Julius
Lu, Yu-Kun
Ketterle, Wolfgang
author_sort Du, Li
collection MIT
description Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub–50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.
first_indexed 2024-09-23T16:57:11Z
format Article
id mit-1721.1/154380
institution Massachusetts Institute of Technology
language en_US
last_indexed 2025-02-19T04:25:58Z
publishDate 2024
publisher American Association for the Advancement of Science
record_format dspace
spelling mit-1721.1/1543802025-01-01T04:17:59Z Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms Du, Li Barral, Pierre Cantara, Michael de Hond, Julius Lu, Yu-Kun Ketterle, Wolfgang MIT-Harvard Center for Ultracold Atoms Massachusetts Institute of Technology. Department of Physics Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub–50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed. 2024-05-02T17:05:27Z 2024-05-02T17:05:27Z 2024-05-02 Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/154380 Du, Li, Barral, Pierre, Cantara, Michael, de Hond, Julius, Lu, Yu-Kun et al. 2024. "Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms." Science. en_US 10.1126/science.adh3023 Science Creative Commons Attribution-Noncommercial-ShareAlike Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science MIT News
spellingShingle Du, Li
Barral, Pierre
Cantara, Michael
de Hond, Julius
Lu, Yu-Kun
Ketterle, Wolfgang
Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title_full Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title_fullStr Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title_full_unstemmed Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title_short Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
title_sort atomic physics on a 50 nm scale realization of a bilayer system of dipolar atoms
url https://hdl.handle.net/1721.1/154380
work_keys_str_mv AT duli atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms
AT barralpierre atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms
AT cantaramichael atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms
AT dehondjulius atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms
AT luyukun atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms
AT ketterlewolfgang atomicphysicsona50nmscalerealizationofabilayersystemofdipolaratoms