Distributions for Compositionally Differentiating Parametric Discontinuities
Computations in physical simulation, computer graphics, and probabilistic inference often require the differentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular differentiable programming languages, such as PyTorch and JAX, ignore discontinuities du...
Main Authors: | Michel, Jesse, Mu, Kevin, Yang, Xuanda, Bangaru, Sai Praveen, Collins, Elias Rojas, Bernstein, Gilbert, Ragan-Kelley, Jonathan, Carbin, Michael, Li, Tzu-Mao |
---|---|
מחברים אחרים: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
פורמט: | Article |
שפה: | English |
יצא לאור: |
Association for Computing Machinery
2024
|
גישה מקוונת: | https://hdl.handle.net/1721.1/154393 |
פריטים דומים
-
Systematically differentiating parametric discontinuities
מאת: Bangaru, Sai Praveen, et al.
יצא לאור: (2021) -
SLANG.D: Fast, Modular and Differentiable Shader Programming
מאת: Bangaru, Sai Praveen, et al.
יצא לאור: (2024) -
Unbiased warped-area sampling for differentiable rendering
מאת: Bangaru, Sai Praveen, et al.
יצא לאור: (2022) -
Algorithms & Systems for Differentiable Graphics Programming
מאת: Bangaru, Sai Praveen
יצא לאור: (2024) -
Differentiable Rendering of Neural SDFs through Reparameterization
מאת: Bangaru, Sai Praveen, et al.
יצא לאור: (2023)