End-to-End Optimization of Metasurfaces for Imaging with Compressed Sensing

We present a framework for the end-to-end optimization of metasurface imaging systems that reconstruct targets using compressed sensing, a technique for solving underdetermined imaging problems when the target object exhibits sparsity (e.g., the object can be described by a small number of nonzero v...

Full description

Bibliographic Details
Main Authors: Arya, Gaurav, Li, William F., Roques-Carmes, Charles, Soljačić, Marin, Johnson, Steven G., Lin, Zin
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Published: American Chemical Society 2024
Online Access:https://hdl.handle.net/1721.1/155313
Description
Summary:We present a framework for the end-to-end optimization of metasurface imaging systems that reconstruct targets using compressed sensing, a technique for solving underdetermined imaging problems when the target object exhibits sparsity (e.g., the object can be described by a small number of nonzero values, but the positions of these values are unknown). We nest an iterative, unapproximated compressed sensing reconstruction algorithm into our end-to-end optimization pipeline, resulting in an interpretable, data-efficient method for maximally leveraging metaoptics to exploit object sparsity. We apply our framework to super-resolution imaging and high-resolution depth imaging with a phase-change material. In both situations, our end-to-end framework effectively optimizes metasurface structures for compressed sensing recovery, automatically balancing a number of complicated design considerations to select an imaging measurement matrix from a complex, physically constrained manifold with millions of dimensions. The optimized metasurface imaging systems are robust to noise, significantly improving over random scattering surfaces and approaching the ideal compressed sensing performance of a Gaussian matrix, showing how a physical metasurface system can demonstrably approach the mathematical limits of compressed sensing.