Addressing misspecification in contextual optimization
We study the predict-then-optimize framework approach, which combines machine learning and a downstream optimization task. This approach entails forecasting unknown parameters of an optimization problem and then resolving the optimization task based on these predictions. For example, consider an ene...
מחבר ראשי: | Bennouna, Omar |
---|---|
מחברים אחרים: | Ozdaglar, Asuman |
פורמט: | Thesis |
יצא לאור: |
Massachusetts Institute of Technology
2024
|
גישה מקוונת: | https://hdl.handle.net/1721.1/156138 |
פריטים דומים
-
Dynamic Learning and Pricing with Model Misspecification
מאת: Nambiar, Mila, et al.
יצא לאור: (2020) -
The inconsistency of distributed lag estimators due to misspecification by time aggregation
מאת: Engle, R. F.
יצא לאור: (2011) -
Quantile regression under misspecification with an application to the U.S. wage structure
מאת: Angrist, Joshua David, et al.
יצא לאור: (2011) -
Aligning Robot Behaviors with Human Intents by Exposing Learned Behaviors and Resolving Misspecifications
מאת: Booth, Serena
יצא לאור: (2023) -
Optimal Classical Simulation of State-Independent Quantum Contextuality
מאת: Cabello, Adán, et al.
יצא לאור: (2018)