Congestion Control in Machine Learning Clusters
This paper argues that fair-sharing, the holy grail of congestion control algorithms for decades, is not necessarily a desirable property in Machine Learning (ML) training clusters. We demonstrate that for a specific combination of jobs, introducing unfairness improves the training time for all comp...
Autor principal: | Rajasekaran, Sudarsanan |
---|---|
Outros Autores: | Ghobadi, Manya |
Formato: | Tese |
Publicado em: |
Massachusetts Institute of Technology
2024
|
Acesso em linha: | https://hdl.handle.net/1721.1/156313 |
Registros relacionados
-
Congestion Control in Machine Learning Clusters
por: Rajasekaran, Sudarsanan, et al.
Publicado em: (2023) -
MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine Learning
por: Rajasekaran, Sudarsanan, et al.
Publicado em: (2024) -
Paranasal Sinusal Congestion in Cluster Type Headache
por: Fahrettin Ege
Publicado em: (2023-12-01) -
Dynamic clustering based risk aware congestion control technique for vehicular network
por: Bhupendra Dhakad, et al.
Publicado em: (2024-10-01) -
An Integrated Machine Learning Approach for Congestive Heart Failure Prediction
por: M. Sheetal Singh, et al.
Publicado em: (2024-03-01)