Learning to Model Atoms Across Scales
The understanding of atoms and how they interact forms the foundation of modern natural science, as well as material and drug discovery efforts. Computational chemistry methods such as density functional theory and molecular dynamics simulation can offer an unparalleled spatiotemporal resolution for...
Hlavní autor: | Fu, Xiang |
---|---|
Další autoři: | Jaakkola, Tommi S. |
Médium: | Diplomová práce |
Vydáno: |
Massachusetts Institute of Technology
2024
|
On-line přístup: | https://hdl.handle.net/1721.1/156328 |
Podobné jednotky
-
Inference and machine learning across the spatial scales in geophysics
Autor: Szenicer, A
Vydáno: (2021) -
Manipulation of atoms across a surface at room temperature
Autor: Fishlock, T, a další
Vydáno: (2000) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
Autor: Xie, Tian, a další
Vydáno: (2021) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
Autor: Xie, Tian, a další
Vydáno: (2022) -
Zirconium oxidation on the atomic scale.
Autor: Hudson, D, a další
Vydáno: (2009)