Using heterogeneous Graph Neural Networks(hGNN) to predict cell-cell communication
This thesis investigates diverse computational methodologies for modeling cellular interactions using single-cell RNA sequencing (scRNA-seq) data. We evaluate the performance of Graph Neural Networks (GNNs) both with and without gene-gene edges, Contrastive Learning, and Variational Autoencoders (VA...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2024
|
Online Access: | https://hdl.handle.net/1721.1/156766 |