Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression

CSCW Companion ’24, November 9–13, 2024, San Jose, Costa Rica

Bibliographic Details
Main Authors: Liu, Jiaying (Lizzy), Wang, Yunlong, Lyu, Yao, Su, Yiheng, Niu, Shuo, Xu, Xuhai, Zhang, Yan
Format: Article
Language:English
Published: ACM|Companion of the 2024 Computer-Supported Cooperative Work and Social Computing 2024
Online Access:https://hdl.handle.net/1721.1/157763
_version_ 1824458393713115136
author Liu, Jiaying (Lizzy)
Wang, Yunlong
Lyu, Yao
Su, Yiheng
Niu, Shuo
Xu, Xuhai
Zhang, Yan
author_facet Liu, Jiaying (Lizzy)
Wang, Yunlong
Lyu, Yao
Su, Yiheng
Niu, Shuo
Xu, Xuhai
Zhang, Yan
author_sort Liu, Jiaying (Lizzy)
collection MIT
description CSCW Companion ’24, November 9–13, 2024, San Jose, Costa Rica
first_indexed 2025-02-19T04:25:11Z
format Article
id mit-1721.1/157763
institution Massachusetts Institute of Technology
language English
last_indexed 2025-02-19T04:25:11Z
publishDate 2024
publisher ACM|Companion of the 2024 Computer-Supported Cooperative Work and Social Computing
record_format dspace
spelling mit-1721.1/1577632025-01-05T04:17:02Z Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression Liu, Jiaying (Lizzy) Wang, Yunlong Lyu, Yao Su, Yiheng Niu, Shuo Xu, Xuhai Zhang, Yan CSCW Companion ’24, November 9–13, 2024, San Jose, Costa Rica Despite the growing interest in leveraging Large Language Models (LLMs) for content analysis, current studies have primarily focused on text-based content. In the present work, we explored the potential of LLMs in assisting video content analysis by conducting a case study that followed a new workflow of LLM-assisted multimodal content analysis. The workflow encompasses codebook design, prompt engineering, LLM processing, and human evaluation. We strategically crafted annotation prompts to get LLM Annotations in structured form and explanation prompts to generate LLM Explanations for a better understanding of LLM reasoning and transparency. To test LLM's video annotation capabilities, we analyzed 203 keyframes extracted from 25 YouTube short videos about depression. We compared the LLM Annotations with those of two human coders and found that LLM has higher accuracy in object and activity Annotations than emotion and genre Annotations. Moreover, we identified the potential and limitations of LLM's capabilities in annotating videos. Based on the findings, we explore opportunities and challenges for future research and improvements to the workflow. We also discuss ethical concerns surrounding future studies based on LLM-assisted video analysis. 2024-12-05T21:56:15Z 2024-12-05T21:56:15Z 2024-11-11 2024-12-01T08:48:28Z Article http://purl.org/eprint/type/ConferencePaper 979-8-4007-1114-5 https://hdl.handle.net/1721.1/157763 Liu, Jiaying (Lizzy), Wang, Yunlong, Lyu, Yao, Su, Yiheng, Niu, Shuo et al. 2024. "Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression." PUBLISHER_CC en https://doi.org/10.1145/3678884.3681850 Creative Commons Attribution-NonCommercial-NoDerivs https://creativecommons.org/licenses/by-nc-nd/4.0/ The author(s) application/pdf ACM|Companion of the 2024 Computer-Supported Cooperative Work and Social Computing Association for Computing Machinery
spellingShingle Liu, Jiaying (Lizzy)
Wang, Yunlong
Lyu, Yao
Su, Yiheng
Niu, Shuo
Xu, Xuhai
Zhang, Yan
Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title_full Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title_fullStr Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title_full_unstemmed Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title_short Harnessing LLMs for Automated Video Content Analysis: An Exploratory Workflow of Short Videos on Depression
title_sort harnessing llms for automated video content analysis an exploratory workflow of short videos on depression
url https://hdl.handle.net/1721.1/157763
work_keys_str_mv AT liujiayinglizzy harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT wangyunlong harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT lyuyao harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT suyiheng harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT niushuo harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT xuxuhai harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression
AT zhangyan harnessingllmsforautomatedvideocontentanalysisanexploratoryworkflowofshortvideosondepression