Summary: | In thirty years of active development, dynamic nuclear polarization (DNP) has emerged as a forefront technique for expanding the scope of solid state nuclear magnetic resonance. For the most part, and particularly at high fields, these advances have come with continuous-wave microwave irradiation and the introduction of nitroxide-based biradicals exploiting the cross effect mechanism. In this thesis, I argue that this approach is not necessarily optimal and report progress towards arbitrary-waveform DNP, in the construction of a suitable solid-state microwave source, and the use of narrow-line monoradicals exploiting the Overhauser effect. My colleagues and I have also investigated the Overhauser mechanism through selective deuteration of radicals, leading to a relatively simple modification which yielded a significant increase in Overhauser enhancement. Finally, I detail studies of two unexplored DNP mechanisms in trityl: the three-spin solid effect and resonant mixing. With solid-state microwave sources and Overhauser radicals, DNP is now more accessible as we can achieve reasonable enhancement without the need for a gyrotron. Moreover, as amplifier and resonator technologies continue to develop, it is likely that pulsed DNP will emerge at high fields and overtake continuous-wave DNP in absolute sensitivity enhancement as well.
|