Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
Object Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. Materials and methods Th...
Egile Nagusiak: | Schauman, S. S., Iyer, Siddharth S., Sandino, Christopher M., Yurt, Mahmut, Cao, Xiaozhi, Liao, Congyu, Ruengchaijatuporn, Natthanan, Chatnuntawech, Itthi, Tong, Elizabeth, Setsompop, Kawin |
---|---|
Beste egile batzuk: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
Springer International Publishing
2025
|
Sarrera elektronikoa: | https://hdl.handle.net/1721.1/158263 |
Antzeko izenburuak
-
Acquisition and reconstruction methods for magnetic resonance imaging
nork: Chatnuntawech, Itthi
Argitaratua: (2016) -
Model-based reconstruction of magnetic resonance spectroscopic imaging
nork: Chatnuntawech, Itthi
Argitaratua: (2013) -
Efficient T 2 mapping with blip‐up/down EPI and gSlider‐SMS
nork: Cao, Xiaozhi, et al.
Argitaratua: (2022) -
Diffusion‐PEPTIDE: Distortion‐ and blurring‐free diffusion imaging with self‐navigated motion‐correction and relaxometry capabilities
nork: Fair, Merlin J., et al.
Argitaratua: (2022) -
Fast image reconstruction with L2-regularization
nork: Bilgic, Berkin, et al.
Argitaratua: (2015)