Blade tonal noise reduction using tail articulation at high Reynolds number
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | en_US |
Published: |
Massachusetts Institute of Technology
2005
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/27879 |
_version_ | 1811068604467118080 |
---|---|
author | Macumber, Daniel Lee, 1981- |
author2 | Anuradha M. Annaswamy. |
author_facet | Anuradha M. Annaswamy. Macumber, Daniel Lee, 1981- |
author_sort | Macumber, Daniel Lee, 1981- |
collection | MIT |
description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005. |
first_indexed | 2024-09-23T07:58:24Z |
format | Thesis |
id | mit-1721.1/27879 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T07:58:24Z |
publishDate | 2005 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/278792019-04-09T15:51:33Z Blade tonal noise reduction using tail articulation at high Reynolds number Macumber, Daniel Lee, 1981- Anuradha M. Annaswamy. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (leaves 141-144). The biologically inspired method of tail articulation is investigated as a means of reducing tonal noise due to the stator wake blade interaction in underwater vehicles. This work is experimental in nature and conducted in the closed channel water tunnel at Naval Undersea Warfare Center in Newport, Rhode Island. Tail articulation is carried out with a life scale stator model with hinged flapping tail designed to (i) operate in freestream velocities corresponding to Reynolds number in the range 75,000 < Re < 300,000 and (ii) operate at frequencies up to 30 Hz in order to investigate the range of Strouhal number 0.0 < St < 0.35. Velocity measurements in the active stator wake are carried out by Laser Doppler Velocimetry, LDV, and Particle Image Velocimetry, PIV, in order to investigate the effects of tail articulation. Time averaged measurements of the stator wake by LDV show that Strouhal number of the tail articulation has a dominant effect on the time mean stator drag. Instantaneous phase averaged measurements of the stator wake by PIV show three regimes of the stator wake as Strouhal number is increased; quasi-steady wake spreading, vortex roll up, and strong vortex wake. A low order model describing the creation and convection of vorticity by tail articulation is developed which describes wake phenomena observed in experimental measurements. A two dimensional blade force simulation coupled with the reduced order tail articulation model is used to perimetrically search for a tail motion resulting in lower unsteady blade forces. (cont.) Finally, a three dimensional unsteady propeller simulation using both experimental wake velocity data by PIV and simulated wake velocity data generated by the reduced order tail articulation model is used to predict the effect of tail articulation on radiated noise. These simulations indicate that reduction of radiated noise by 5 dB or more is possible using tail articulation. by Daniel Lee Macumber. S.M. 2005-09-26T15:58:00Z 2005-09-26T15:58:00Z 2005 2005 Thesis http://hdl.handle.net/1721.1/27879 61102301 en_US M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 144 leaves 4864729 bytes 4861819 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology |
spellingShingle | Mechanical Engineering. Macumber, Daniel Lee, 1981- Blade tonal noise reduction using tail articulation at high Reynolds number |
title | Blade tonal noise reduction using tail articulation at high Reynolds number |
title_full | Blade tonal noise reduction using tail articulation at high Reynolds number |
title_fullStr | Blade tonal noise reduction using tail articulation at high Reynolds number |
title_full_unstemmed | Blade tonal noise reduction using tail articulation at high Reynolds number |
title_short | Blade tonal noise reduction using tail articulation at high Reynolds number |
title_sort | blade tonal noise reduction using tail articulation at high reynolds number |
topic | Mechanical Engineering. |
url | http://hdl.handle.net/1721.1/27879 |
work_keys_str_mv | AT macumberdaniellee1981 bladetonalnoisereductionusingtailarticulationathighreynoldsnumber |