Measuring atomic properties with an atom interferometer

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2002.

Bibliographic Details
Main Author: Roberts, Tony David, 1972-
Other Authors: David E. Pritchard.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2005
Subjects:
Online Access:http://hdl.handle.net/1721.1/29302
_version_ 1811089546401546240
author Roberts, Tony David, 1972-
author2 David E. Pritchard.
author_facet David E. Pritchard.
Roberts, Tony David, 1972-
author_sort Roberts, Tony David, 1972-
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2002.
first_indexed 2024-09-23T14:20:54Z
format Thesis
id mit-1721.1/29302
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T14:20:54Z
publishDate 2005
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/293022019-04-11T08:05:43Z Measuring atomic properties with an atom interferometer Roberts, Tony David, 1972- David E. Pritchard. Massachusetts Institute of Technology. Dept. of Physics. Massachusetts Institute of Technology. Dept. of Physics. Physics. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2002. Includes bibliographical references (p. 177-186). Two experiments are presented which measure atomic properties using an atom interferometer. The interferometer splits the sodium de Broglie wave into two paths, one of which travels through an interaction region. The paths are recombined, and the interference pattern exhibits a phase shift depending on the strength of the interaction. In the first experiment, the interaction involves a gas. De Broglie waves traveling through the gas experience a phase shift represented by an index of refraction. By measuring the index of refraction at various wavelengths, the predicted phenomenon of glory oscillations in the phase shift has been observed for the first time. The index of refraction has been measured for sodium atoms in gases of argon, krypton, xenon, and nitrogen over a wide range of wavelength. These measurements offer detailed insight into the interatomic potential between sodium atoms and the gases. Theoretical predictions of the interatomic potentials are challenged by these results, which should encourage a renewed effort to better understand these potentials. The second experiment measures atomic polarizability with an atom interferometer. Here, the interaction is with an electric field; the atom experiences a phase shift proportional to its energy inside the field. Previously, this method was used to perform the most accurate (< 1%) measurement of sodium polarizability. The precision was limited, however, by the spread of velocities in the atomic beam-the phase shift is different depending on velocity, and the -interference pattern is washed out. (cont.) This thesis presents a new technique to "rephase" the interference pattern at large applied fields, and demonstrates a measurement that is free of this limitation. In addition, most of the systematic errors that plagued the previous polarizability measurement are eliminated by the new technique, and an order of magnitude improvement in precision now appears quite feasible. The remaining systematic errors can be eliminated by measuring the ratio of polarizabilities between two different atoms, a comparison whose precision is better by another order of magnitude. by Tony David Roberts. Ph.D. 2005-10-14T19:44:32Z 2005-10-14T19:44:32Z 2002 2002 Thesis http://hdl.handle.net/1721.1/29302 52562243 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 188 p. 7113277 bytes 7113085 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
spellingShingle Physics.
Roberts, Tony David, 1972-
Measuring atomic properties with an atom interferometer
title Measuring atomic properties with an atom interferometer
title_full Measuring atomic properties with an atom interferometer
title_fullStr Measuring atomic properties with an atom interferometer
title_full_unstemmed Measuring atomic properties with an atom interferometer
title_short Measuring atomic properties with an atom interferometer
title_sort measuring atomic properties with an atom interferometer
topic Physics.
url http://hdl.handle.net/1721.1/29302
work_keys_str_mv AT robertstonydavid1972 measuringatomicpropertieswithanatominterferometer