Asymptotics of Gaussian Regularized Least-Squares

We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of dec...

Full description

Bibliographic Details
Main Authors: Lippert, Ross, Rifkin, Ryan
Language:en_US
Published: 2005
Subjects:
Online Access:http://hdl.handle.net/1721.1/30577
_version_ 1811079384023433216
author Lippert, Ross
Rifkin, Ryan
author_facet Lippert, Ross
Rifkin, Ryan
author_sort Lippert, Ross
collection MIT
description We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example.
first_indexed 2024-09-23T11:14:09Z
id mit-1721.1/30577
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:14:09Z
publishDate 2005
record_format dspace
spelling mit-1721.1/305772019-04-12T13:39:30Z Asymptotics of Gaussian Regularized Least-Squares Lippert, Ross Rifkin, Ryan AI machine learning regularization We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example. 2005-12-22T02:40:10Z 2005-12-22T02:40:10Z 2005-10-20 MIT-CSAIL-TR-2005-067 AIM-2005-030 CBCL-257 http://hdl.handle.net/1721.1/30577 en_US Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory 1 p. 7286963 bytes 527607 bytes application/postscript application/pdf application/postscript application/pdf
spellingShingle AI
machine learning
regularization
Lippert, Ross
Rifkin, Ryan
Asymptotics of Gaussian Regularized Least-Squares
title Asymptotics of Gaussian Regularized Least-Squares
title_full Asymptotics of Gaussian Regularized Least-Squares
title_fullStr Asymptotics of Gaussian Regularized Least-Squares
title_full_unstemmed Asymptotics of Gaussian Regularized Least-Squares
title_short Asymptotics of Gaussian Regularized Least-Squares
title_sort asymptotics of gaussian regularized least squares
topic AI
machine learning
regularization
url http://hdl.handle.net/1721.1/30577
work_keys_str_mv AT lippertross asymptoticsofgaussianregularizedleastsquares
AT rifkinryan asymptoticsofgaussianregularizedleastsquares