Characterization of nano-arrays fabricated via self-assembly of block copolymers

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.

Bibliographic Details
Main Author: Shnayderman, Marianna, 1982-
Other Authors: Caroline Ross.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2006
Subjects:
Online Access:http://hdl.handle.net/1721.1/32725
_version_ 1826199778118074368
author Shnayderman, Marianna, 1982-
author2 Caroline Ross.
author_facet Caroline Ross.
Shnayderman, Marianna, 1982-
author_sort Shnayderman, Marianna, 1982-
collection MIT
description Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
first_indexed 2024-09-23T11:25:38Z
format Thesis
id mit-1721.1/32725
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T11:25:38Z
publishDate 2006
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/327252019-04-10T21:33:51Z Characterization of nano-arrays fabricated via self-assembly of block copolymers Shnayderman, Marianna, 1982- Caroline Ross. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Materials Science and Engineering. Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004. Includes bibliographical references (leaves 28-29). This research focused on methods for regulating arrangement of self-assembled block copolymers by understanding fabrication conditions and their effects on the polymers on flat and patterned substrates. Block copolymer self-assembly is a simple and low cost process for creating lithographic masks with features under 100nm in dimension. These patterns can be transferred to more permanent materials for applications in electronics, magnetic devices, as well as sensors and filters. Polystyrene-poly(ferrocenyldimethylsilane) block copolymer thin films were characterized in terms of their spin curves, PSF spherical domain cross sectional area distributions, and correlation distances. Optimal fabrication conditions were selected from studying polymer behavior on flat substrates and then used for templated substrate studies. Substrates that were templated with grooves produced quantized numbers of rows of spherical domains ranging from 4 to 7. Behavior in these grooves was characterized in terms of groove width constraints, cross sectional domain area distributions, and row ordering. For all templated arrays, the lengths of ordered regions were more than 2 fold higher than the diameters of ordered regions of arrays on flat substrates. The characterization accomplished in this work will be used to compare block copolymers with similar volume fractions of the blocks that allow sphere microdomain formation but of different molecular weights. The ultimate goals are to establish how the molecular weight of this block copolymer affects its self assembly on templated and on flat substrates and to use this factor as well as fabrication conditions and template geometries to engineer arrays with desirable properties. by Marianna Shnayderman. S.B. 2006-05-15T20:25:37Z 2006-05-15T20:25:37Z 2004 2004 Thesis http://hdl.handle.net/1721.1/32725 56513316 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 29 leaves 2073814 bytes 2072468 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
spellingShingle Materials Science and Engineering.
Shnayderman, Marianna, 1982-
Characterization of nano-arrays fabricated via self-assembly of block copolymers
title Characterization of nano-arrays fabricated via self-assembly of block copolymers
title_full Characterization of nano-arrays fabricated via self-assembly of block copolymers
title_fullStr Characterization of nano-arrays fabricated via self-assembly of block copolymers
title_full_unstemmed Characterization of nano-arrays fabricated via self-assembly of block copolymers
title_short Characterization of nano-arrays fabricated via self-assembly of block copolymers
title_sort characterization of nano arrays fabricated via self assembly of block copolymers
topic Materials Science and Engineering.
url http://hdl.handle.net/1721.1/32725
work_keys_str_mv AT shnaydermanmarianna1982 characterizationofnanoarraysfabricatedviaselfassemblyofblockcopolymers