8.04 Quantum Physics I, Spring 2003

Experimental basis of quantum physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, deBroglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave p...

Full description

Bibliographic Details
Main Author: Lee, Young S.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Learning Object
Language:en-US
Published: 2003
Subjects:
Online Access:http://hdl.handle.net/1721.1/34688
Description
Summary:Experimental basis of quantum physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, deBroglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems.