8.851 Strong Interactions, Spring 2003

The strong force which bind quarks together is described by a relativistic quantum field theory called quantum chromodynamics (QCD). Subject surveys: The QCD Langrangian, asymptotic freedom and deep inelastic scattering, jets, the QCD vacuum, instantons and the U(1) problem, lattice guage theory, an...

Full description

Bibliographic Details
Main Author: Stewart, Iain
Language:en-US
Published: 2003
Subjects:
Online Access:http://hdl.handle.net/1721.1/36838
Description
Summary:The strong force which bind quarks together is described by a relativistic quantum field theory called quantum chromodynamics (QCD). Subject surveys: The QCD Langrangian, asymptotic freedom and deep inelastic scattering, jets, the QCD vacuum, instantons and the U(1) problem, lattice guage theory, and other phases of QCD. From the course home page: Course Description Strong Interactions is a course in the construction and application of effective field theories, which are a modern tool of choice in making predictions based on the Standard Model. Concepts such as matching, renormalization, the operator product expansion, power counting, and running with the renormalization group will be discussed. Topics will be taken from heavy quark decays and CP violation, factorization in hard processes (deep inelastic scattering and exclusive processes), non-relativistic bound states in field theory (QED and QCD), chiral perturbation theory, few-nucleon systems, and possibly other Standard Model subjects.