The Transverse Particle Migration of Highly Filled Polymer Fluid Flow in a Pipe
Shear-induced particle migration was investigated by using a continuum diffusive -flux model for the creep flow of nickel powder filled polymers, which are viscous with shear-thinning characteristic. The model, together with flow equations, was employed for solving the non-Newtonian flow patterns an...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | en_US |
Published: |
2003
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/3757 |
Summary: | Shear-induced particle migration was investigated by using a continuum diffusive -flux model for the creep flow of nickel powder filled polymers, which are viscous with shear-thinning characteristic. The model, together with flow equations, was employed for solving the non-Newtonian flow patterns and non-uniform particle concentration distribution of mono-modal suspensions in a pressure-driven tube flow. Particle volume fraction and velocity fields for the non-homogenous shear flow field were predicted for 40% particle volume fraction. The model captures the trends found in experimental investigations. |
---|