Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).
Main Authors: | , , , , , |
---|---|
Format: | Technical Report |
Language: | en_US |
Published: |
MIT Joint Program on the Science and Policy of Global Change
2007
|
Online Access: | http://mit.edu/globalchange/www/abstracts.html#a151 http://hdl.handle.net/1721.1/38465 |
_version_ | 1811094019915120640 |
---|---|
author | Sokolov, Andrei P. Kicklighter, David W. Melillo, Jerry M. Felzer, Benjamin Schlosser, C. Adam Cronin, Timothy W. |
author_facet | Sokolov, Andrei P. Kicklighter, David W. Melillo, Jerry M. Felzer, Benjamin Schlosser, C. Adam Cronin, Timothy W. |
author_sort | Sokolov, Andrei P. |
collection | MIT |
description | Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/). |
first_indexed | 2024-09-23T15:54:15Z |
format | Technical Report |
id | mit-1721.1/38465 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T15:54:15Z |
publishDate | 2007 |
publisher | MIT Joint Program on the Science and Policy of Global Change |
record_format | dspace |
spelling | mit-1721.1/384652019-04-12T07:26:06Z Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle Sokolov, Andrei P. Kicklighter, David W. Melillo, Jerry M. Felzer, Benjamin Schlosser, C. Adam Cronin, Timothy W. Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/). A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/nitrogen interactions in terrestrial ecosystems affect feedbacks to the climate system using the MIT Integrated Global Systems Model (IGSM) and its terrestrial ecosystems submodel, the Terrestrial Ecosystems Model (TEM). We use two versions of TEM, one with (standard TEM) and one without (carbon-only TEM) carbon/nitrogen interactions. Feedbacks between climate and the terrestrial carbon cycle are estimated by comparing model response to an increase in atmospheric CO2 concentration with and without climate change. Overall, for small or moderate increases in surface temperatures, the terrestrial biosphere simulated by the standard TEM takes up less atmospheric carbon than the carbon-only version, resulting in a larger increase in atmospheric CO2 concentration for a given amount of carbon emitted. With strong surface warming, the terrestrial biosphere simulated by the standard TEM may still become a carbon source early in the 23rd century. Our simulations also show that consideration of carbon/nitrogen interactions not only limits the effect of CO2 fertilization in the absence of climate change, but also changes the sign of the carbon feedback with climate change. In the simulations with the carbon-only version of TEM, surface warming significantly reduces carbon sequestration in both vegetation and soil, leading to a positive carbon-cycle feedback to the climate system. However, in simulations with standard TEM, the increased decomposition of soil organic matter with higher temperatures releases soil nitrogen to stimulate plant growth and carbon storage in the vegetation that is greater than the carbon lost from soil. As a result, sequestration of carbon in terrestrial ecosystems increases, in comparison to the fixed climate case, and the carbon cycle feedback to the climate system becomes negative for much of the next three centuries. This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors. 2007-08-15T19:39:27Z 2007-08-15T19:39:27Z 2007-06 Technical Report http://mit.edu/globalchange/www/abstracts.html#a151 http://hdl.handle.net/1721.1/38465 Report no. 151 en_US Report no. 151 application/pdf MIT Joint Program on the Science and Policy of Global Change |
spellingShingle | Sokolov, Andrei P. Kicklighter, David W. Melillo, Jerry M. Felzer, Benjamin Schlosser, C. Adam Cronin, Timothy W. Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title | Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title_full | Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title_fullStr | Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title_full_unstemmed | Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title_short | Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle |
title_sort | consequences of considering carbon nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle |
url | http://mit.edu/globalchange/www/abstracts.html#a151 http://hdl.handle.net/1721.1/38465 |
work_keys_str_mv | AT sokolovandreip consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle AT kicklighterdavidw consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle AT melillojerrym consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle AT felzerbenjamin consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle AT schlossercadam consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle AT cronintimothyw consequencesofconsideringcarbonnitrogeninteractionsonthefeedbacksbetweenclimateandtheterrestrialcarboncycle |