Constraint and Restoring Force

Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing scalar fields across a sensor network with occasional changes. We illustrate C...

Full description

Bibliographic Details
Main Authors: Beal, Jacob, Bachrach, Jonathan, Tobenkin, Mark
Other Authors: Gerald Sussman
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/38484
Description
Summary:Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing scalar fields across a sensor network with occasional changes. We illustrate CRF’s usefulness by applying it to gradients, a common building block for sensor network systems. The resulting algorithm, CRF-Gradient, determines locally when to self-repair and when to stop and save energy. CRF-Gradient is self-stabilizing, converges in O(diameter) time, and has been verified experimentally in simulation and on a network of Mica2 motes. Finally we show how CRF can be applied to other algorithms as well, such as the calculation of probability fields.