An automated framework for power-efficient detection in embedded sensor systems

Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.

Bibliographic Details
Main Author: Benbasat, Ari Yosef, 1975-
Other Authors: Joseph A. Paradiso.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/38524
_version_ 1811083188562296832
author Benbasat, Ari Yosef, 1975-
author2 Joseph A. Paradiso.
author_facet Joseph A. Paradiso.
Benbasat, Ari Yosef, 1975-
author_sort Benbasat, Ari Yosef, 1975-
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.
first_indexed 2024-09-23T12:27:45Z
format Thesis
id mit-1721.1/38524
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:27:45Z
publishDate 2007
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/385242019-04-10T22:21:30Z An automated framework for power-efficient detection in embedded sensor systems Benbasat, Ari Yosef, 1975- Joseph A. Paradiso. Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences Architecture. Program In Media Arts and Sciences Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 191-200). The availability of miniature low-cost sensors has allowed for the capture of rich, multimodal data streams in compact embedded sensor nodes. These devices have the capacity to radically improve the quality and amount of data available in such diverse applications as detecting degenerative diseases, monitoring remote regions, and tracking the state of smart assets as they traverse the supply chain. However, current implementations of these applications suffer from short lifespans due to high sensor energy use and limited battery size. By concentrating our design efforts on the sensors themselves, it is possible to construct embedded systems that achieve their goal(s) while drawing significantly less power. This will increase their lifespan, allowing many more applications to make the transition from laboratory to marketplace and thereby benefit a much wider population. This dissertation presents an automated framework for power-efficient detection in embedded sensor systems. The core of this framework is a decision tree classifier that dynamically orders the activation and adjusts the sampling rate of the sensors, such that only the data necessary to determine the system state is collected at any given time. (cont.) This classifier can be tuned to trade-off accuracy and power in a structured fashion. Use of a sensor set which measures the phenomena of interest in multiple modalities and at various rates further improves the power savings by increasing the information available to the classification process. An application based on a wearable gait monitor provides quantitative support for this framework. It is shown that the decision tree classifiers designed achieve roughly identical detection accuracies to those obtained using support vector machines while drawing three to nine times less power. A simulation of the real-time operation of the classifiers demonstrates that our multi-tiered classifier determines states as accurately as a single-trigger (binary) wakeup system while drawing half as much power, with only a negligible increase in latency. by Ari Yosef Benbasat. Ph.D. 2007-08-29T19:06:02Z 2007-08-29T19:06:02Z 2007 2007 Thesis http://hdl.handle.net/1721.1/38524 162594229 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 200 p. application/pdf Massachusetts Institute of Technology
spellingShingle Architecture. Program In Media Arts and Sciences
Benbasat, Ari Yosef, 1975-
An automated framework for power-efficient detection in embedded sensor systems
title An automated framework for power-efficient detection in embedded sensor systems
title_full An automated framework for power-efficient detection in embedded sensor systems
title_fullStr An automated framework for power-efficient detection in embedded sensor systems
title_full_unstemmed An automated framework for power-efficient detection in embedded sensor systems
title_short An automated framework for power-efficient detection in embedded sensor systems
title_sort automated framework for power efficient detection in embedded sensor systems
topic Architecture. Program In Media Arts and Sciences
url http://hdl.handle.net/1721.1/38524
work_keys_str_mv AT benbasatariyosef1975 anautomatedframeworkforpowerefficientdetectioninembeddedsensorsystems
AT benbasatariyosef1975 automatedframeworkforpowerefficientdetectioninembeddedsensorsystems