Functional genomics of a non-toxic Alexandrium lusitanicum culture

Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2007.

Bibliographic Details
Main Author: Martins, Claudia A
Other Authors: Donald M. Anderson.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/38634
_version_ 1826200335778054144
author Martins, Claudia A
author2 Donald M. Anderson.
author_facet Donald M. Anderson.
Martins, Claudia A
author_sort Martins, Claudia A
collection MIT
description Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2007.
first_indexed 2024-09-23T11:34:53Z
format Thesis
id mit-1721.1/38634
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T11:34:53Z
publishDate 2007
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/386342022-01-14T19:29:48Z Functional genomics of a non-toxic Alexandrium lusitanicum culture Martins, Claudia A Donald M. Anderson. Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering Woods Hole Oceanographic Institution Massachusetts Institute of Technology. Department of Biology /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering. Biology. Woods Hole Oceanographic Institution. Alexandrium Genomics Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2007. Includes bibliographical references. Paralytic shellfish poisoning (PSP) is a human intoxication associated with the consumption of shellfish contaminated with a family of neurotoxins called saxitoxins. Many species in the dinoflagellate genus Alexandrium have been shown to produce these toxins. Here I report the first case of a culture of Alexandrium that has completely lost the ability to produce saxitoxins. The loss of toxicity was accompanied by a reduction in growth capability. A subculture of this isolate maintains the ability to produce toxins and to grow at rates and to cell abundances that were characteristic of the original Alexandrium culture. The growth and toxicity differences in the two isolates were demonstrated to be a property of the dinoflagellate itself and were not dependent on the different bacterial symbionts associated with each culture. The pair of subcultures is a novel experimental system to study gene expression related to toxin production and growth in dinoflagellates. The products of gene expression were analyzed in the two subcultures of Alexandrium grown under the same conditions, but where toxicity and growth differ. At the metabolome level, compounds were identified that were unique to the non-toxic isolate; their emergence may be correlated to a disruption of the biosynthetic pathway for PSP toxins. (cont.) These compounds share some characteristics and potential structural similarities with saxitoxins, though they are not any of the known toxin derivatives. Difference gel electrophoresis (DIGE) identified proteins differentially expressed between the two subcultures. Identification of some of these proteins was possible by searching the expressed sequence tag (EST) database for dinoflagellates. Proteins shown to be down-regulated in the non-toxic, slower growing subculture are all enzymes from the Calvin cycle, which may explain the limited growth of the non-toxic isolate. Other unknown, differentially expressed proteins may relate to the loss of toxicity, but their identity and function remain unresolved. by Claudia A. Martins. Ph.D. 2007-08-29T20:37:59Z 2007-08-29T20:37:59Z 2007 2007 Thesis http://hdl.handle.net/1721.1/38634 157011091 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 149 p. application/pdf Massachusetts Institute of Technology
spellingShingle /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.
Biology.
Woods Hole Oceanographic Institution.
Alexandrium
Genomics
Martins, Claudia A
Functional genomics of a non-toxic Alexandrium lusitanicum culture
title Functional genomics of a non-toxic Alexandrium lusitanicum culture
title_full Functional genomics of a non-toxic Alexandrium lusitanicum culture
title_fullStr Functional genomics of a non-toxic Alexandrium lusitanicum culture
title_full_unstemmed Functional genomics of a non-toxic Alexandrium lusitanicum culture
title_short Functional genomics of a non-toxic Alexandrium lusitanicum culture
title_sort functional genomics of a non toxic alexandrium lusitanicum culture
topic /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.
Biology.
Woods Hole Oceanographic Institution.
Alexandrium
Genomics
url http://hdl.handle.net/1721.1/38634
work_keys_str_mv AT martinsclaudiaa functionalgenomicsofanontoxicalexandriumlusitanicumculture