Global Optimization with Polynomials

The class of POP (Polynomial Optimization Problems) covers a wide rang of optimization problems such as 0 - 1 integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. In this paper, we review some methods on solving the unconstraint case: minimize a real-...

Full description

Bibliographic Details
Main Author: Han, Deren
Format: Article
Language:en_US
Published: 2003
Subjects:
Online Access:http://hdl.handle.net/1721.1/3883
_version_ 1811093730293186560
author Han, Deren
author_facet Han, Deren
author_sort Han, Deren
collection MIT
description The class of POP (Polynomial Optimization Problems) covers a wide rang of optimization problems such as 0 - 1 integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. In this paper, we review some methods on solving the unconstraint case: minimize a real-valued polynomial p(x) : Rn → R, as well the constraint case: minimize p(x) on a semialgebraic set K, i.e., a set defined by polynomial equalities and inequalities. We also summarize some questions that we are currently considering.
first_indexed 2024-09-23T15:49:43Z
format Article
id mit-1721.1/3883
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T15:49:43Z
publishDate 2003
record_format dspace
spelling mit-1721.1/38832019-04-12T08:36:44Z Global Optimization with Polynomials Han, Deren Polynomial Optimization Problems Semidefinite Programming Second-Order-Cone-Programming LP relaxation The class of POP (Polynomial Optimization Problems) covers a wide rang of optimization problems such as 0 - 1 integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. In this paper, we review some methods on solving the unconstraint case: minimize a real-valued polynomial p(x) : Rn → R, as well the constraint case: minimize p(x) on a semialgebraic set K, i.e., a set defined by polynomial equalities and inequalities. We also summarize some questions that we are currently considering. Singapore-MIT Alliance (SMA) 2003-12-14T22:39:43Z 2003-12-14T22:39:43Z 2004-01 Article http://hdl.handle.net/1721.1/3883 en_US High Performance Computation for Engineered Systems (HPCES); 121672 bytes application/pdf application/pdf
spellingShingle Polynomial Optimization Problems
Semidefinite Programming
Second-Order-Cone-Programming
LP relaxation
Han, Deren
Global Optimization with Polynomials
title Global Optimization with Polynomials
title_full Global Optimization with Polynomials
title_fullStr Global Optimization with Polynomials
title_full_unstemmed Global Optimization with Polynomials
title_short Global Optimization with Polynomials
title_sort global optimization with polynomials
topic Polynomial Optimization Problems
Semidefinite Programming
Second-Order-Cone-Programming
LP relaxation
url http://hdl.handle.net/1721.1/3883
work_keys_str_mv AT handeren globaloptimizationwithpolynomials