Shelf currents, ice and wind : a numerical modeling study

Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003.

Bibliographic Details
Main Author: Russell, Sarah L. (Sarah Louise), 1973-
Other Authors: Paola Malanotte-Rizzoli and Breckner Owens.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/39225
_version_ 1826205505940357120
author Russell, Sarah L. (Sarah Louise), 1973-
author2 Paola Malanotte-Rizzoli and Breckner Owens.
author_facet Paola Malanotte-Rizzoli and Breckner Owens.
Russell, Sarah L. (Sarah Louise), 1973-
author_sort Russell, Sarah L. (Sarah Louise), 1973-
collection MIT
description Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003.
first_indexed 2024-09-23T13:14:08Z
format Thesis
id mit-1721.1/39225
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T13:14:08Z
publishDate 2007
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/392252022-02-02T20:15:55Z Shelf currents, ice and wind : a numerical modeling study Russell, Sarah L. (Sarah Louise), 1973- Paola Malanotte-Rizzoli and Breckner Owens. Woods Hole Oceanographic Institution. Joint Program in Physical Oceanography Woods Hole Oceanographic Institution Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology. Department of Ocean Engineering Joint Program in Physical Oceanography. Earth, Atmospheric, and Planetary Sciences. Woods Hole Oceanographic Institution. Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 190-197). In this thesis, the effects of sea ice, downwelling favorable winds and barotropic background currents on shelf fronts are examined using numerical models. The models are configured with the characteristics of the East Greenland Current, north of the Denmark Strait, in mind. While the models are heavily idealized, basic physical parameters match the observed ocean. The first part of the thesis uses a three dimensional, primitive equation model to examine the behavior of a shelf front under steady, along shelf winds and barotropic currents. The wind stress generates shoreward surface Ekman transport and the barotropic current generates an offshore bottom Ekman transport. In both cases, the Ekman transport causes the creation of mixed layers and a relationship describing the mixed layer thickness is derived relating the cross shelf flux of density to the along shelf flux of density. When there is a barotropic inflow, the cross shelf Ekman mass transport is balanced by a return flow of mass in the interior. When there is a wind stress, in the present model configuration, the influence of the offshore boundary obscures the effect of the Ekman layers. The second part of the thesis focuses on the ice-ocean interaction using a simple, two layer, one dimensional toy model. The interaction of sea-ice, geostrophic currents, and wind are examined. In the presence of a current and the absence of wind, the ice is transported downstream with the current. In the presence of wind and the absence of a current, the net ice-ocean transport is perpendicular to the wind, as is expected for Ekman layer theory. The two layer system acts like a poorly resolved Ekman spiral: the ice has down wind and shoreward transport while the ocean has up wind and shoreward transport. by Sarah L. Russell. Ph.D. 2007-10-19T21:05:23Z 2007-10-19T21:05:23Z 2003 2003 Thesis http://hdl.handle.net/1721.1/39225 52711351 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 197 p. application/pdf Massachusetts Institute of Technology
spellingShingle Joint Program in Physical Oceanography.
Earth, Atmospheric, and Planetary Sciences.
Woods Hole Oceanographic Institution.
Russell, Sarah L. (Sarah Louise), 1973-
Shelf currents, ice and wind : a numerical modeling study
title Shelf currents, ice and wind : a numerical modeling study
title_full Shelf currents, ice and wind : a numerical modeling study
title_fullStr Shelf currents, ice and wind : a numerical modeling study
title_full_unstemmed Shelf currents, ice and wind : a numerical modeling study
title_short Shelf currents, ice and wind : a numerical modeling study
title_sort shelf currents ice and wind a numerical modeling study
topic Joint Program in Physical Oceanography.
Earth, Atmospheric, and Planetary Sciences.
Woods Hole Oceanographic Institution.
url http://hdl.handle.net/1721.1/39225
work_keys_str_mv AT russellsarahlsarahlouise1973 shelfcurrentsiceandwindanumericalmodelingstudy