Stress-mediated reaction pathways for dislocation nucleation in copper

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.

Bibliographic Details
Main Author: Boyer, Robert D. (Robert Damian), 1978-
Other Authors: Sidney Yip.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://dspace.mit.edu/handle/1721.1/39550
http://hdl.handle.net/1721.1/39550
_version_ 1811082900670513152
author Boyer, Robert D. (Robert Damian), 1978-
author2 Sidney Yip.
author_facet Sidney Yip.
Boyer, Robert D. (Robert Damian), 1978-
author_sort Boyer, Robert D. (Robert Damian), 1978-
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.
first_indexed 2024-09-23T12:12:29Z
format Thesis
id mit-1721.1/39550
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:12:29Z
publishDate 2009
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/395502019-04-12T09:09:19Z Stress-mediated reaction pathways for dislocation nucleation in copper Boyer, Robert D. (Robert Damian), 1978- Sidney Yip. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Materials Science and Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007. Includes bibliographical references (p. 111-119). The ductile behavior of metals requires dislocation nucleation, from either homogeneous or heterogeneous sources, in order to produce the large number of dislocations necessary for extensive plastic deformation. As with the majority of the defect processes that comprise deformation and failure of materials, dislocation nucleation is well described in the framework of transition state theory as a stress-mediated, thermally activated process. We have used reaction pathway sampling methods and well-fit empirical potentials to determine the stress-dependent behavior of and atomistic mechanisms for dislocation nucleation at stresses much lower than typically accessible to atomistic techniques. We have shown that a significant range of stresses exist for which homogeneous dislocation loop nucleation is feasible because the critical nucleate transitions to an in-plane shear perturbation where the shear displacement of most particles is significantly less than the Burger's vector. We have also revealed that the common structural conception of activation volume for dislocation nucleation does not apply for all stresses and in general over-predicts the stress-dependence of activation by considering only the shear displacement of the critical defect. (cont.) Furthermore, by considering the full reaction pathway for dislocation nucleation in perfect crystals and at a vacancy, we have provided a fully atomistic description of shear localization via an expanded one-dimensional chain analysis of the wave-steepening behavior. Lastly, both breaking the local atomic symmetry and increasing the extent of heterogeneous nucleation sites are shown to lower the activation energy for dislocation nucleation. In general we have applied reaction pathway sampling to the problem of dislocation nucleation in Cu not only for a perfect crystal, but also in the presence of point defects, vacancy clusters and nanowire surfaces. As a result the strength of a variety of nucleation sites in mediating activation as well as specific atomistic mechanisms for dislocation nucleation have been discussed from both structural and energetic perspectives. by Robert D. Boyer. Ph.D. 2009-01-23T14:49:54Z 2009-01-23T14:49:54Z 2007 2007 Thesis http://dspace.mit.edu/handle/1721.1/39550 http://hdl.handle.net/1721.1/39550 174143043 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/39550 http://dspace.mit.edu/handle/1721.1/7582 130 p. application/pdf Massachusetts Institute of Technology
spellingShingle Materials Science and Engineering.
Boyer, Robert D. (Robert Damian), 1978-
Stress-mediated reaction pathways for dislocation nucleation in copper
title Stress-mediated reaction pathways for dislocation nucleation in copper
title_full Stress-mediated reaction pathways for dislocation nucleation in copper
title_fullStr Stress-mediated reaction pathways for dislocation nucleation in copper
title_full_unstemmed Stress-mediated reaction pathways for dislocation nucleation in copper
title_short Stress-mediated reaction pathways for dislocation nucleation in copper
title_sort stress mediated reaction pathways for dislocation nucleation in copper
topic Materials Science and Engineering.
url http://dspace.mit.edu/handle/1721.1/39550
http://hdl.handle.net/1721.1/39550
work_keys_str_mv AT boyerrobertdrobertdamian1978 stressmediatedreactionpathwaysfordislocationnucleationincopper