Design and control of microsatellite clusters for tracking missions

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.

Bibliographic Details
Main Author: Griffith, John Daniel
Other Authors: Leena Singh and Jonathan How.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2007
Subjects:
Online Access:http://hdl.handle.net/1721.1/39703
_version_ 1811073026282749952
author Griffith, John Daniel
author2 Leena Singh and Jonathan How.
author_facet Leena Singh and Jonathan How.
Griffith, John Daniel
author_sort Griffith, John Daniel
collection MIT
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.
first_indexed 2024-09-23T09:27:26Z
format Thesis
id mit-1721.1/39703
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:27:26Z
publishDate 2007
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/397032019-04-12T21:24:44Z Design and control of microsatellite clusters for tracking missions Griffith, John Daniel Leena Singh and Jonathan How. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007. Includes bibliographical references (p. 141-145). Space-based tracking missions are an emerging interest that could be accomplished using a cluster of microsatellites. This thesis addresses the design of microsatellite clusters to accurately track a target in a probabilistic suborbital occupancy corridor by pursuing the following: orbit determination using optimal measurement principles, cluster design heuristics and fuel optimal cluster maintenance. These are all evaluated on a high-fidelity simulation testbed. First, the orbital determination approach utilizes optimal measurement principles to design a constellation of clusters that minimizes the average model-based target tracking error. A two part approach, (1) constellation design and (2) cluster design, reduces the overall orbit determination complexity. The constellation design provides continuous, 24 hour coverage of the occupancy corridor and virtual formation centers about which the cluster design formulates the relative microsatellite orbits. Results suggest that satellite separations, rather than the number of the microsatellites in the cluster, are more important for providing target tracking accuracy. (cont.) Results also show that the J2-induced relative drift of the satellites in a cluster can be reduced by several orders of magnitude with very little degradation in the cluster's tracking capability. Second, this research formulates a cluster design heuristic that provides a robust cluster viewing geometry for a target in any direction. This robust design heuristic provides tracking capability for a cluster that is demonstrated to be comparable to one specifically tuned for a particular target orbit. Third, this thesis presents a receding horizon Model Predictive Control approach to cluster maintenance that exhibits reduced cluster-wide fuel expenditure by allowing relative satellite drift while maintaining mission driven cluster characteristics. The controller achieves this performance by being robust to unmodeled dynamics and noise. Finally, the performance of the integrated cluster-based orbit determination, tracking and control laws is demonstrated on a high-fidelity, multi-satellite simulation testbed. Results include tracking performance and trade-offs as a function of various control objectives. by John Daniel Griffith. S.M. 2007-12-07T16:09:51Z 2007-12-07T16:09:51Z 2007 2007 Thesis http://hdl.handle.net/1721.1/39703 176869225 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 145 p. application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Griffith, John Daniel
Design and control of microsatellite clusters for tracking missions
title Design and control of microsatellite clusters for tracking missions
title_full Design and control of microsatellite clusters for tracking missions
title_fullStr Design and control of microsatellite clusters for tracking missions
title_full_unstemmed Design and control of microsatellite clusters for tracking missions
title_short Design and control of microsatellite clusters for tracking missions
title_sort design and control of microsatellite clusters for tracking missions
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/39703
work_keys_str_mv AT griffithjohndaniel designandcontrolofmicrosatelliteclustersfortrackingmissions