Modeling of Hall thruster lifetime and erosion mechanisms

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.

Bibliographic Details
Main Author: Cheng, Shannon Yun-Ming, 1978-
Other Authors: Manuel Martinez-Sanchez.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2008
Subjects:
Online Access:http://hdl.handle.net/1721.1/42043
_version_ 1811078221557399552
author Cheng, Shannon Yun-Ming, 1978-
author2 Manuel Martinez-Sanchez.
author_facet Manuel Martinez-Sanchez.
Cheng, Shannon Yun-Ming, 1978-
author_sort Cheng, Shannon Yun-Ming, 1978-
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.
first_indexed 2024-09-23T10:56:01Z
format Thesis
id mit-1721.1/42043
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:56:01Z
publishDate 2008
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/420432019-04-11T02:50:50Z Modeling of Hall thruster lifetime and erosion mechanisms Cheng, Shannon Yun-Ming, 1978- Manuel Martinez-Sanchez. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 169-180). Hall thrusters and other types of electric propulsion have become a tempting alternative to traditional chemical propulsion systems for in-space applications due to the high specific impulses (Isp) they provide. Large Isp translates to a highly desirable mass savings and system trades show that Hall thrusters fall in an optimum operation regime well suited for missions such as station-keeping and orbit transfers. However, uncertainty about thruster lifetime has impeded the device's widespread integration as mission designers want a propulsion system guaranteed to last the entire mission duration. Furthermore, recent interest in applying the technology to more complex propulsion tasks has suggested that throttle-capable thrusters will become desirable and concern about the effect of operating condition on thruster longevity has been raised. To aid in early design stages and later thruster qualification, development of a computational life-prediction tool is needed since experimental lifetime testing is prohibitively expensive and time-consuming. In this work, an axisymmetric hybrid-PIC model, HPHall, has been upgraded to simulate the erosion of the Hall thruster acceleration channel, the degradation of which is the main life-limiting factor of the propulsion system. Evolution of the thruster geometry as a result of material removal due to sputtering is modeled by calculating wall erosion rates, stepping the grid boundary by a chosen time step and altering the computational mesh between simulation runs. The code is first tuned to predict the nose cone erosion of a 200W Busek Hall thruster, the BHT-200. Simulated erosion profiles from the first 500 hours of operation compare favorably to experimental data. (cont.) The thruster is then subjected to a virtual life test that predicts a lifetime of 1,330 hours, well within the empirically determined range of 1,287-1,519 hours. The model is then applied to the BHT-600, a higher power thruster, to reproduce wear of its exit ring configuration over 932 hours of firing. Better understanding of the physics of anomalous plasma transport and low-energy sputtering are identified as the most pressing needs for improved lifetime models. by Shannon Yun-Ming Cheng. Ph.D. 2008-09-02T17:53:40Z 2008-09-02T17:53:40Z 2007 2007 Thesis http://hdl.handle.net/1721.1/42043 228865572 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 180 p. application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Cheng, Shannon Yun-Ming, 1978-
Modeling of Hall thruster lifetime and erosion mechanisms
title Modeling of Hall thruster lifetime and erosion mechanisms
title_full Modeling of Hall thruster lifetime and erosion mechanisms
title_fullStr Modeling of Hall thruster lifetime and erosion mechanisms
title_full_unstemmed Modeling of Hall thruster lifetime and erosion mechanisms
title_short Modeling of Hall thruster lifetime and erosion mechanisms
title_sort modeling of hall thruster lifetime and erosion mechanisms
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/42043
work_keys_str_mv AT chengshannonyunming1978 modelingofhallthrusterlifetimeanderosionmechanisms