A computational tool for the rapid design and prototyping of propellers for underwater vehicles

Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007.

Bibliographic Details
Main Author: D'Epagnier, Kathryn Port
Other Authors: Patrick J. Keenan.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2008
Subjects:
Online Access:http://hdl.handle.net/1721.1/42314
_version_ 1811074762530619392
author D'Epagnier, Kathryn Port
author2 Patrick J. Keenan.
author_facet Patrick J. Keenan.
D'Epagnier, Kathryn Port
author_sort D'Epagnier, Kathryn Port
collection MIT
description Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007.
first_indexed 2024-09-23T09:54:58Z
format Thesis
id mit-1721.1/42314
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:54:58Z
publishDate 2008
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/423142022-01-14T19:26:58Z A computational tool for the rapid design and prototyping of propellers for underwater vehicles D'Epagnier, Kathryn Port Patrick J. Keenan. Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering Woods Hole Oceanographic Institution Massachusetts Institute of Technology. Department of Mechanical Engineering /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering. Mechanical Engineering. Woods Hole Oceanographic Institution. Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. Includes bibliographical references (p. 60). An open source, MATLABTM-based propeller design code MPVL was improved to include rapid prototyping capabilities as well as other upgrades as part of this effort. The resulting code, OpenPVL is described in this thesis. In addition, results from the development code BasicPVL are presented. An intermediate code, BasicPVL, was created by the author while OpenPVL was under development, and it provides guidance for initial propeller designs and propeller efficiency analysis. OpenPVL is part of the open source software suite of propeller design codes, OpenProp. OpenPVL is in the form of a Graphical User Interface (GUI) which features both a parametric design technique and a single propeller geometry generator. This code combines a user-friendly interface with a highly modifiable platform for advanced users. This tool offers graphical propeller design feedback while recording propeller input, output, geometry, and performance. OpenPVL features the ability to translate the propeller design geometry into a file readable by a Computer Aided Design (CAD) program and converted into a 3D-printable file. Efficient propellers reduce the overall power requirements for Autonomous Underwater Vehicles (AUVs), and other propulsion-powered vehicles. The focus of this study is based on the need of propeller users to have an open source computer-based engineering tool for the rapid design of propellers suited to a wide range of underwater vehicles. Propeller vortex lattice lifting line (PVL) code in combination with 2D foil theory optimizes propeller design for AUVs. Several case studies demonstrate the functionality of OpenPVL, and serve as guides for future propeller designs. (cont.) The first study analyzes propeller thruster performance characteristics for an off-the-shelf propeller, while the second study demonstrates the process for propeller optimization-from the initial design to the final file that can be read by a 3D printer. The third study reviews the complete process of the design and production of an AUV propeller. Thus, OpenPVL performs a variety of operations as a propeller lifting line code in streamlining the propeller optimization and prototyping process. by Kathryn Port D'Epagnier. S.M. 2008-09-03T15:18:55Z 2008-09-03T15:18:55Z 2007 2007 Thesis http://hdl.handle.net/1721.1/42314 232640005 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 95 p. application/pdf Massachusetts Institute of Technology
spellingShingle /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.
Mechanical Engineering.
Woods Hole Oceanographic Institution.
D'Epagnier, Kathryn Port
A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title_full A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title_fullStr A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title_full_unstemmed A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title_short A computational tool for the rapid design and prototyping of propellers for underwater vehicles
title_sort computational tool for the rapid design and prototyping of propellers for underwater vehicles
topic /Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.
Mechanical Engineering.
Woods Hole Oceanographic Institution.
url http://hdl.handle.net/1721.1/42314
work_keys_str_mv AT depagnierkathrynport acomputationaltoolfortherapiddesignandprototypingofpropellersforunderwatervehicles
AT depagnierkathrynport computationaltoolfortherapiddesignandprototypingofpropellersforunderwatervehicles