Aquatic microenvironments in bacterial ecology and diversity
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/43047 |
_version_ | 1811089548146376704 |
---|---|
author | Hunt, Dana E., Ph. D. Massachusetts Institute of Technology |
author2 | Martin F. Polz. |
author_facet | Martin F. Polz. Hunt, Dana E., Ph. D. Massachusetts Institute of Technology |
author_sort | Hunt, Dana E., Ph. D. Massachusetts Institute of Technology |
collection | MIT |
description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. |
first_indexed | 2024-09-23T14:20:56Z |
format | Thesis |
id | mit-1721.1/43047 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T14:20:56Z |
publishDate | 2008 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/430472019-04-12T09:47:54Z Aquatic microenvironments in bacterial ecology and diversity Hunt, Dana E., Ph. D. Massachusetts Institute of Technology Martin F. Polz. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008. Page 116 blank. Includes bibliographical references. Molecular surveys have revealed tremendous bacterial diversity in the world's oceans; yet how do these diverse bacteria with the same essential nutrient requirements co-exist in the same environment? This study examines the role of aquatic microenvironments in generating bacterial diversity: closely related organisms may co-exist in the same environment without competing for resources by a combination of habitat, metabolic, and behavioral differentiation. This hypothesis has been approached from several angles: (i) Within the bacterial family Vibrionaceae is there evidence for microenvironmental specialization or functional differentiation? (ii) Is there small scale clustering of bacteria around phytoplankton in the coastal ocean? Microdiverse clusters (< 1% 16S rRNA gene divergence) of Vibrionaceae were found to be differentially distributed between zooplankton-enriched, particulate, and planktonic water column microenvironments. However microhabitat preferences may not correspond to metabolic capabilities; chitin metabolism was observed to be a near ubiquitous metabolic characteristic of the Vibrionaceae, yet does not appear to be linked to colonization of chitinous zooplankton or particles. Finally, the microscale patchiness of bacterial cells was examined over an annual cycle, revealing seasonal variation and a positive correlation with eukaryotic cell number, suggesting that bacteria may cluster in the nutrient-rich microzones around algae in the environment. This study seeks to answer several fundamental questions about marine bacterial populations: how do closely related species co-exist in the same environment, do bacteria adapt to distinct microscale environments and how important are these microenvironments to bacterial productivity. by Dana E. Hunt.. Ph.D. 2008-11-07T18:55:59Z 2008-11-07T18:55:59Z 2008 2008 Thesis http://hdl.handle.net/1721.1/43047 243783325 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 166 p.: application/pdf Massachusetts Institute of Technology |
spellingShingle | Civil and Environmental Engineering. Hunt, Dana E., Ph. D. Massachusetts Institute of Technology Aquatic microenvironments in bacterial ecology and diversity |
title | Aquatic microenvironments in bacterial ecology and diversity |
title_full | Aquatic microenvironments in bacterial ecology and diversity |
title_fullStr | Aquatic microenvironments in bacterial ecology and diversity |
title_full_unstemmed | Aquatic microenvironments in bacterial ecology and diversity |
title_short | Aquatic microenvironments in bacterial ecology and diversity |
title_sort | aquatic microenvironments in bacterial ecology and diversity |
topic | Civil and Environmental Engineering. |
url | http://hdl.handle.net/1721.1/43047 |
work_keys_str_mv | AT huntdanaephdmassachusettsinstituteoftechnology aquaticmicroenvironmentsinbacterialecologyanddiversity |