An Experimental Platform for Investigating Decision and Collaboration Technologies in Time-Sensitive Mission Control Operations

This report describes the conceptual design and detailed architecture of an experimental platform developed to support investigations of novel decision and collaboration technologies for complex, time-critical mission control operations, such as military command and control and emergency respo...

Full description

Bibliographic Details
Main Authors: Scott, S. D., Cummings, M. L.
Other Authors: Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Humans and Automation Laboratory
Format: Technical Report
Language:en_US
Published: MIT Humans and Automation Laboratory 2009
Online Access:http://hdl.handle.net/1721.1/46731
Description
Summary:This report describes the conceptual design and detailed architecture of an experimental platform developed to support investigations of novel decision and collaboration technologies for complex, time-critical mission control operations, such as military command and control and emergency response. In particular, the experimental platform is designed to enable exploration of novel interface and interaction mechanisms to support both human-human collaboration and human-machine collaboration for mission control operations involving teams of human operators engaged in supervisory control of intelligent systems, such as unmanned aerial vehicles (UAVs). Further, the experimental platform is designed to enable both co-located and distributed collaboration among operations team members, as well as between team members and relevant mission stakeholders. To enable initial investigations of new information visualization, data fusion, and data sharing methods, the experimental platform provides a synthetic task environment for a representative collaborative time-critical mission control task scenario. This task scenario involves a UAV operations team engaged in intelligence, surveillance, and reconnaissance (ISR) activities. In the experimental task scenario, the UAV team consists of one mission commander and three operators controlling multiple, homogeneous, semi-autonomous UAVs. In order to complete its assigned missions, the UAV team must coordinate with a ground convoy, an external strike team, and a local joint surveillance and target attack radar system (JSTARS). This report details this task scenario, including the possible simulation events that can occur and the logic governing the simulation dynamics. In order to perform human-in-the-loop experimentation within the synthetic task environment, the experimental platform also consists of a physical laboratory designed to emulate a miniature command center. The Command Center Laboratory comprises a number of large-screen displays, multi-screen operator stations, and mobile, tablet-style devices. This report details the physical configuration and hardware components of this Command Center Laboratory. Details are also provided of the software architecture used to implement the synthetic task environment and experimental interface technologies to facilitate user experiments in this laboratory. The report also summarizes the process of conducting an experiment in the experimental platform, including details of scenario design, hardware and software instrumentation, and participant training. Finally, the report suggests several improvements that could be made to the experimental platform based on insights gained from initial user experiments that have been conducted in this environment.